Oxidation of Metals

, Volume 90, Issue 1–2, pp 135–151 | Cite as

Dependence on the Chromium Content of the High-Temperature Oxidation Behavior of Ta-Rich Nickel-Based Cast Alloys

  • Patrice BerthodEmail author
  • Zohra Himeur
Original Paper


The high-temperature stability of primary tantalum carbides is a problem of importance for chromium-rich cast alloys, based on cobalt or nickel. The focus of this study was nickel-based alloys, as these alloys are particularly sensitive to a lack of TaC in the as-cast state and by dissolution due to high-temperature exposure. In this work, a possible way for promoting the formation of many TaC precipitates by changing from the usual 30 wt% chromium content was investigated. Five alloys with Cr content varying from 10 to 50 wt% were prepared and then subjected to microstructure characterization and to oxidation tests. In contrast with what was expected, decreasing the Cr content in comparison with the Ni–30Cr–0.4C–6Ta reference alloy did not succeed in obtaining more TaC precipitates, but instead had the opposite effect. Concerning the high-temperature oxidation behavior at 1127 and 1237 °C, loss of resistance was observed only for a Cr content at the lower level of 10 wt%. It was noticed that a subscale CrTaO4 developed during oxidation and seemed to promote oxide spallation during cooling.


Cast nickel-based alloys High tantalum content Varying chromium content High temperature oxidation 


  1. 1.
    P. Kofstad, High Temperature Corrosion, (Elsevier Applied Science, Amsterdam, 1988).Google Scholar
  2. 2.
    D. Young, High Temperature and Corrosion of Metals, (Elsevier, Amsterdam, 2008).Google Scholar
  3. 3.
    C. T. Sims and W. C. Hagel, The Superalloys, (Wiley, Hoboken, 1972).Google Scholar
  4. 4.
    E. F. Bradley, Superalloys: A technical guide, (ASM International, Metals Park, 1988).Google Scholar
  5. 5.
    N. Birks, G. H. Meier and F. S. Pettit, Introduction to the High-Temperature Oxidation of Metals, 2nd ed, (Cambridge University Press, Cambridge, 2009).Google Scholar
  6. 6.
    S. Langard, Biological and Environmental Aspects of Chromium, (Elsevier Science, Amsterdam, 1983).Google Scholar
  7. 7.
    D. Caplan and M. Cohen, Journal of the Electrochemical Society 108, (5), 1961 (438).CrossRefGoogle Scholar
  8. 8.
    P. Berthod, Oxidation of Metals 64, (3–4), 2005 (235).CrossRefGoogle Scholar
  9. 9.
    G. C. Wood, I. G. Wright, T. Hodgkiess and D. P. Whittle, Werkstoffe und Korrosion 21, 1970 (900).CrossRefGoogle Scholar
  10. 10.
    N. Mu, K. Jung, N. M. Yanar, F. S. Pettit, G. R. Holcomb, B. H. Howard and G. H. Meier, Oxidation of Metals 79, 2013 (461).CrossRefGoogle Scholar
  11. 11.
    G. R. Holcomb and D. E. Halman, Scripta Metarialia 54, 2006 (1821).CrossRefGoogle Scholar
  12. 12.
    S. R. J. Saunders, M. Monteiro and F. Rizzo, Progress in Materials Science 53, 2008 (775).CrossRefGoogle Scholar
  13. 13.
    P. Berthod, L. Aranda, S. Mathieu and M. Vilasi, Oxidation of Metals 79, (5–6), 2013 (517).CrossRefGoogle Scholar
  14. 14.
    P. Berthod, L. Aranda, C. Vébert and S. Michon, Calphad 28, (2), 2004 (159).CrossRefGoogle Scholar
  15. 15.
    M. J. Donachie and S. J. Donachie, Superalloys: A Technical Guide, 2nd ed, (ASM International, Materials Park, 2002).Google Scholar
  16. 16.
    S. Michon, L. Aranda, P. Berthod and P. Steinmetz, La Revue de Métallurgie – C.I.T./Science et Génie des Matériaux 9, 2004 (651).Google Scholar
  17. 17.
    P. Berthod, Advanced Materials Letters 8, (8), 2017 (866).CrossRefGoogle Scholar
  18. 18.
    P. Berthod, Advances in Materials Science and Engineering, article ID 4145369, (2017)
  19. 19.
    L. Corona, E. Conrath, P. Berthod, M. Ritouet, in proceedings of the International Conference on Sustainable Energy and Information Engineering (SEEIE 2016) 442–446.Google Scholar
  20. 20.
    J. Di Martino, S. Michon, L. Aranda, P. Berthod, R. Podor and C. Rapin, Annales de Chimie – Sciences des Matériaux 28, (Suppl. 1), 2003 (S231).Google Scholar
  21. 21.
    P. Berthod, C. Vébert and L. Aranda, Journal of Materials Science 42, 2007 (352).CrossRefGoogle Scholar
  22. 22.
    E. Conrath and P. Berthod, Materials at High Temperature 33, (2), 2016 (189).CrossRefGoogle Scholar
  23. 23.
    H.-T. Lin, J. Hemrick, M. Singh and A. Michaelis, Advanced and Refractory Ceramics for Energy Conservation and Efficiency, (Wiley, Hoboken, 2015).Google Scholar
  24. 24.
    P. Massard, J.-C. Bernier and A. Michel, Journal of Solid State Chemistry 4, 1972 (269).CrossRefGoogle Scholar
  25. 25.
    M. A. Tena, M. Llusar, J.-A. Badenes, M. Vicente and G. Monros, British Ceramic Transactions 99, (5), 2000 (219).CrossRefGoogle Scholar
  26. 26.
    S.-J. Park, S.-M. Seo, Y.-S. Yoo, H.-W. Jeong and H. Jang, Corrosion Science 90, 2015 (305).CrossRefGoogle Scholar
  27. 27.
    W. Ren, F. Ouyang, B. Ding, Y. Zhong, J. Yu, Z. Ren and L. Zhou, Journal of Alloys and Compounds 724, 2017 (565).CrossRefGoogle Scholar
  28. 28.
    J. A. Nychka, D. R. Clarke and G. H. Meier, Materials Science and Engineering A 490, 2008 (359).CrossRefGoogle Scholar
  29. 29.
    P. Berthod, S. Raude, A. Chiaravalle, A.-S. Renck, C. Rapin and R. Podor, La Revue de Métallurgie – C.I.T./Science et Génie des Matériaux 12, 2004 (1031).Google Scholar
  30. 30.
    P. Berthod, L. Aranda and C. Vébert, Annales de Chimie-Science des Matériaux 31, (2), 2006 (213).Google Scholar
  31. 31.
    P. Berthod, S. Raude and A. Chiaravalle, Annales de Chimie-Science des Matériaux 31, (2), 2006 (237).CrossRefGoogle Scholar
  32. 32.
    P. Berthod, Y. Hamini and L. Aranda, Materials Science Forum 595–598, 2008 (861).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Faculty of Science and TechnologiesUniversity of LorraineVandoeuvre-lès-NancyFrance
  2. 2.Department CP2S, CNRS, Institut Jean Lamour (UMR 7198)University of LorraineVandoeuvre-lès-NancyFrance

Personalised recommendations