Oxidation of Metals

, Volume 90, Issue 1–2, pp 119–133 | Cite as

Stability of External α-Al2O3 Scales on Alloy 602 CA at 1100–1200 °C

  • A. ChyrkinEmail author
  • R. Swadźba
  • R. Pillai
  • T. Galiullin
  • E. Wessel
  • D. Grüner
  • W. J. Quadakkers
Original Paper


An external ultrathin α-Al2O3 scale grown on the Ni-base alloy 602 CA during air oxidation at 800 °C was characterized by means of high-resolution TEM/EDX and electron diffraction. Alloy samples pre-oxidized at 800 °C were subsequently exposed at 1100, 1150 and 1200 °C for up to 100 h. Whereas the external alumina remained stable at 1100 °C, with the increasing exposure temperature, the pre-grown alumina scale tended to break down resulting in an external chromia scale accompanied by internal alumina precipitation. The transition from external to internal Al oxidation was investigated using SEM/EDX/EBSD. The critical Al depletion at the scale-alloy interface during the post-exposure at 1100–1200 °C was modeled using the CALPHAD-based thermodynamic-kinetic approach.


Alloy 602 CA Internal oxidation Alumina scales Depletion Breakaway Pre-oxidation 



The authors are grateful to Dr. H. Hattendorf from VDM Metals (Werdohl, Germany) for providing a batch of 602 CA. Mr. H. Cosler is kindly acknowledged for carrying out oxidation tests.


  1. 1.
    V. D. M. ThyssenKrupp, Nicrofer® 6025 HT—alloy 602 CA, Material Data Sheet No. 4137, 2007.Google Scholar
  2. 2.
    U. Brill, Metall 46, 778 (1992).Google Scholar
  3. 3.
    U. Brill and J. Klower, Metall 51, 263 (1997).Google Scholar
  4. 4.
    A. P. Fraas, Heat Exchanger Design, (Wiley, New York, 1989).Google Scholar
  5. 5.
    H. R. N. Jones, The Application of Combustion Principles to Domestic Gas Burner Design, (Spon, London, 1989).Google Scholar
  6. 6.
    Haynes, Haynes 214—Material Data Sheet, (Haynes International, Kokomo, 2011).Google Scholar
  7. 7.
    P. J. Maziasz, I. G. Wright, J. P. Shingledecker, R. R. Gibbons and R. R. Romanosky, in Advances in Materials Technology for Fossil Power Plants; the Fourth International Conference, eds. R. Viswanathan, D. Gandy and K. Coleman (ASM International, Hilton Head Island, South Carolina, 2005), pp. 602–622.Google Scholar
  8. 8.
    H. Ackermann, G. Teneva-Kosseva, H. Koehne, K. Lucka, S. Richter and J. Mayer, Materials and Corrosion 59, 380 (2008).CrossRefGoogle Scholar
  9. 9.
    R. Pillai, H. Ackermann, H. Hattendorf and S. Richter, Corrosion Science 75, 28 (2013).CrossRefGoogle Scholar
  10. 10.
    A. Chyrkin, W. G. Sloof, R. Pillai, T. Galiullin, D. Grüner and W. J. Quadakkers, Materials at High Temperatures 32, 102 (2015).CrossRefGoogle Scholar
  11. 11.
    A. Chyrkin, R. Pillai, H. Ackermann, H. Hattendorf, S. Richter, W. Nowak, D. Grüner and W. J. Quadakkers, Corrosion Science 96, 32 (2015).CrossRefGoogle Scholar
  12. 12.
    V. P. Deodeshmukh, S. K. Srivastava, in: Superalloys 2008, Vol. 2008, p. 689.Google Scholar
  13. 13.
    D. J. Young, A. Chyrkin, J. He, D. Grüner and W. J. Quadakkers, Oxidation of Metals 79, 405 (2013).CrossRefGoogle Scholar
  14. 14.
    Haynes, Haynes 224—Material Data Sheet, (Kokomo, Haynes International, 2011).Google Scholar
  15. 15.
    A. Chyrkin, N. Mortazavi, M. Halvarsson, D. Grüner and W. J. Quadakkers, Corrosion Science 98, 688 (2015).CrossRefGoogle Scholar
  16. 16.
    Y. Wang, Y. Liu, H. Tang and W. Li, Materials Characterization 107, 283 (2015).CrossRefGoogle Scholar
  17. 17.
    M. Schiek, L. Niewolak, W. Nowak, G. Meier, R. Vaßen and W. Quadakkers, Oxidation of Metals 84, 661–694 (2015).CrossRefGoogle Scholar
  18. 18.
    A. Chyrkin, R. Pillai, T. Galiullin, E. Wessel, D. Grüner and W. J. Quadakkers, Corrosion Science 124, 138 (2017).CrossRefGoogle Scholar
  19. 19.
    R. Pillai, A. Chyrkin, T. Galiullin, E. Wessel, D. Grüner and W. J. Quadakkers, Corrosion Science 127, 27 (2017).CrossRefGoogle Scholar
  20. 20.
    R. Pillai, W. G. Sloof, A. Chyrkin, L. Singheiser and W. J. Quadakkers, Materials at High Temperatures 32, 57 (2015).CrossRefGoogle Scholar
  21. 21.
    R. Pillai, T. Galiullin, A. Chyrkin and W. J. Quadakkers, Calphad 53, 62 (2016).CrossRefGoogle Scholar
  22. 22.
    L. Hu, D. B. Hovis and A. H. Heuer, Oxidation of Metals 73, 275 (2010).CrossRefGoogle Scholar
  23. 23.
    T. J. Nijdam, N. M. van der Pers and W. G. Sloof, Materials and Corrosion 57, 269 (2006).CrossRefGoogle Scholar
  24. 24.
    C. S. Giggins and F. S. Pettit, Journal of the Electrochemical Society 118, 1782 (1971).CrossRefGoogle Scholar
  25. 25.
    G. C. Rybicki and J. L. Smialek, Oxidation of Metals 31, 275 (1989).CrossRefGoogle Scholar
  26. 26.
    B. A. Pint, J. R. Martin and L. W. Hobbs, Solid State Ionics 78, 99 (1995).CrossRefGoogle Scholar
  27. 27.
    H. J. Grabke, Intermetallics 7, 1153 (1999).CrossRefGoogle Scholar
  28. 28.
    Y. Kitajima, S. Hayashi, T. Nishimoto, T. Narita and S. Ukai, Oxidation of Metals 73, 375 (2010).CrossRefGoogle Scholar
  29. 29.
    A. Shaaban, S. Hayashi and K. Azumi, Oxidation of Metals 82, 85 (2014).CrossRefGoogle Scholar
  30. 30.
    C. Wagner, Journal of the Electrochemical Society 99, 369 (1952).CrossRefGoogle Scholar
  31. 31.
    R. A. Rapp, Acta Metallurgica 9, 730 (1961).CrossRefGoogle Scholar
  32. 32.
    J. W. Park and C. J. Altstetter, Metallurgical Transactions A 18, 43 (1987).CrossRefGoogle Scholar
  33. 33.
    D. P. Whittle, Y. Shida, G. C. Wood, F. H. Stott and B. D. Bastow, Philosophical Magazine A 46, 931 (1982).CrossRefGoogle Scholar
  34. 34.
    S. Leistikow, I. Wolf and H. J. Grabke, Werkstoffe Und Korrosion 38, 556 (1987).CrossRefGoogle Scholar
  35. 35.
    R. Naraparaju, H. J. Christ, F. U. Renner and A. Kostka, Oxidation of Metals 76, 233 (2011).CrossRefGoogle Scholar
  36. 36.
    T. J. Nijdam, L. P. H. Jeurgens and W. G. Sloof, Acta Materialia 53, 1643 (2005).CrossRefGoogle Scholar
  37. 37.
    H. M. Hindam and W. W. Smeltzer, Journal of the Electrochemical Society 127, 1622 (1980).CrossRefGoogle Scholar
  38. 38.
    C. Wagner, Journal of the Electrochemical Society 103, 571 (1956).CrossRefGoogle Scholar
  39. 39.
    B. D. Bastow, D. P. Whittle and G. C. Wood, Oxidation of Metals 12, 413 (1978).CrossRefGoogle Scholar
  40. 40.
    T. Gheno, G. H. Meier and B. Gleeson, Oxidation of Metals 84, 185 (2015).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institute for Energy and Climate Research IEK-2Forschungszentrum Jülich GmbHJülichGermany
  2. 2.Department of ChemistryTaras Shevchenko National University of KyivKievUkraine
  3. 3.Applied Physics, Materials CharacterizationChalmers University of TechnologyGöteborgSweden
  4. 4.Institute for Ferrous MetallurgyGliwicePoland

Personalised recommendations