Oxidation of Metals

, Volume 90, Issue 1–2, pp 1–25 | Cite as

Resistance of High-Nickel, Heat-Resisting Alloys to Air and to Supercritical CO2 at High Temperatures

  • R. I. Olivares
  • D. J. Young
  • T. D. Nguyen
  • P. Marvig
Original Paper


Commercial alloys 282, 230, HR160, HR120 and 188 were exposed to supercritical CO2 and to air at temperatures of 700–1000 °C. Alloy specimens took the form of thick-walled tubes, which were pressurised internally with flowing CO2 to simulate the likely stress conditions in service. All alloys formed protective scales containing continuous chromia layers plus internal oxidation zones. No internal carburisation was ever observed. In most cases, the reaction morphologies and rates were very similar in the two gases. The lack of any significant carbon effect on corrosion is attributed to additional scale layers of manganese spinel and/or silica, which prevent carbon penetration.


Ni-base alloys Oxidation Carburisation Supercritical CO2 Tubular specimens 



This work has been supported by the Australian Government through the Australian Renewable Energy Agency (ARENA). The Australian Government, through ARENA, is supporting Australian research and development in solar photovoltaic and concentrating solar power technologies to help solar power become cost competitive with other energy sources.


  1. 1.
    C. S. Turchi, Z. Ma, T. W. Neises, and M. J. Wagner, Journal of Solar Energy Engineering 135, 041007-1 (2013).CrossRefGoogle Scholar
  2. 2.
    J. Pasch, T. Conboy, D. Fleming, and G. Rochau, Supercritical CO2 Recompression Brayton Cycle: Completed Assembly Description, SANDIA REPORT, SAND2012-9546, 40p, October 2012.Google Scholar
  3. 3.
    V. Dostal, PhD Thesis—A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors, Massachusetts Institute of Technology, January 2004.Google Scholar
  4. 4.
    C. T. Fujii and R. A. Meussner, Journal of the Electrochemical Society 114, 435 (1967).CrossRefGoogle Scholar
  5. 5.
    F. S. Pettit, J. A. Goebel, and G. W. Goward, Corrosion Science 9, 903 (1969).CrossRefGoogle Scholar
  6. 6.
    F. Rouillard, G. Moine, M. Tabarant, and J. C. Ruiz, Oxidation of Metals 77, 57 (2012).CrossRefGoogle Scholar
  7. 7.
    F. Rouillard, G. Moine, L. Martinelli, and J. C. Ruiz, Oxidation of Metals 77, 27 (2012).CrossRefGoogle Scholar
  8. 8.
    H. E. McCoy, Corrosion 21, 84 (1965).CrossRefGoogle Scholar
  9. 9.
    P. Promdirek, G. Lothongkum, S. Chandra-Ambhorn, Y. Wouters, and A. Galerie, Oxidation of metals 81, 315 (2014).CrossRefGoogle Scholar
  10. 10.
    S. B. Newcomb, W. M. Stobbs, and E. Metcalfe, Philosophical Transactions for the Royal Society of London. Series A, Mathematical and Physical Sciences 319, 191 (1986).CrossRefGoogle Scholar
  11. 11.
    W. M. Stobbs, S. B. Newcomb, and E. Metcalfe, Philosophical Transactions for the Royal Society of London. Series A, Mathematical and Physical Sciences 319, 219 (1986).CrossRefGoogle Scholar
  12. 12.
    S. Bouhieda, F. Rouillard, and K. Wolski, Materials at High Temperatures 29, 151 (2012).CrossRefGoogle Scholar
  13. 13.
    J. Pirón-Abellán, T. Olszewski, H. J. Penkalla, G. H. Meier, L. Shingheiser, and W. J. Quadakkers, Materials at High Temperatures 26, 63 (2009).CrossRefGoogle Scholar
  14. 14.
    C. Gleave, J. M. Calvert, D. G. Lee, and P. C. Rowlands, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 379, 409 (1982).CrossRefGoogle Scholar
  15. 15.
    L. Tan, M. Anderson, D. Taylor, and T. R. Allen, Corrosion Science 53, 3273 (2011).CrossRefGoogle Scholar
  16. 16.
    G. Cao, V. Firouzdor, K. Shridharan, M. Anderson, and T. R. Allen, Corrosion Science 60, 246 (2012).CrossRefGoogle Scholar
  17. 17.
    V. Firouzdor, K. Shridharan, G. Cao, M. Anderson, and T. Y. R. Allen, Corrosion Science 69, 281 (2013).CrossRefGoogle Scholar
  18. 18.
    T. Gheno, D. Monceau, J. Zhang, and D. Young, Corrosion Science 53, 2767 (2011).CrossRefGoogle Scholar
  19. 19.
    C. Wagner, Journal of the Electrochemical Society 99, 369 (1952).CrossRefGoogle Scholar
  20. 20.
    I. Wolf and H. J. Grabke, Solid State Communications 54, 5 (1985).CrossRefGoogle Scholar
  21. 21.
    D. Young, T. D. Nguyen, P. Felter, J. Zhang, and J. Cairney, Scripta Materialia 77, 29 (2014).CrossRefGoogle Scholar
  22. 22.
    X. G. Zheng and D. J. Young, Oxidation of Metals 42, 163 (1994).CrossRefGoogle Scholar
  23. 23.
    S. Bouhieda, F. Rouillard, V. Barnier, and K. Wolski, Oxidation of Metals 80, 493 (2013).CrossRefGoogle Scholar
  24. 24.
    D. J. Young, High Temperature Oxidation and Corrosion of Metals, 2nd ed, (Elsevier, Amsterdam, 2016).Google Scholar
  25. 25.
    T. N. Neises, M. J. Wagner, and A. K. Gray, Structural Design Considerations for Tubular Power Tower Receivers Operating at 650 °C. The 8th International Conference on Energy Sustainability. Boston, Massachusetts, June 30–July 2, 2014. Conference Paper NREL/CP-5500-6148.Google Scholar
  26. 26.
    J. H. Park, W. E. King, and S. J. Rothman, Journal of the American Ceramic Society 70, 880 (1987).CrossRefGoogle Scholar
  27. 27.
    M. J. Graham, J. I. Eldridge, D. F. Mitchell, and R. J. Hussey, Materials Science Forum 43, 207 (1989).CrossRefGoogle Scholar
  28. 28.
    K. Hauffe and H. Pfeiffer, Zeitschrift fur Metallkunde 44, 27 (1953). (in German).Google Scholar
  29. 29.
    W. W. Smeltzer, Acta Metallurgica 8, 377 (1960).CrossRefGoogle Scholar
  30. 30.
    F. S. Pettit, R. Yinger, and J. B. Wagner, Acta Metallurgica 8, 1960 (617).CrossRefGoogle Scholar
  31. 31.
    T. D. Nguyen, J. Zhang, and D. J. Young, Corrosion Science 76, 231 (2013).CrossRefGoogle Scholar
  32. 32.
    C. Wagner, Zeitschrift für Elektrochemie 63, 772 (1959). (in German).Google Scholar
  33. 33.
    R. A. Rapp, Corrosion 21, 382 (1965).CrossRefGoogle Scholar
  34. 34.
    P. Guo, J. Zhang, D. J. Young, and C. H. Konrad, Oxidation of Metals 83, 223 (2015).CrossRefGoogle Scholar
  35. 35.
    R. I. Olivares, W. Stein, T. D. Nguyen, D. J. Young, Corrosion of Nickel-Base Alloys by Supercritical CO2, in Advances in Materials Technology for Fossil Power Plants, eds. J. Parker, J. Shingledecker, J. Siefert, ISBN 978-1-62708-131-3 (ASM International, Materials Park, OH, 2016) p. 889.Google Scholar
  36. 36.
    T. D. Nguyen, J. Zhang, and D. J. Young, Oxidation of Metals 81, 549 (2014).CrossRefGoogle Scholar
  37. 37.
    A. Chyrkin, P. Huczkowski, V. Shemet, L. Singheiser, and W. J. Quadakkers, Oxidation of Metals 75, 143 (2011).CrossRefGoogle Scholar
  38. 38.
    A. Jalowicka, R. Duan, P. Huczkowski, A. Chyrkin, D. Gruner, B. A. Pint, K. A. Unocic, and W. J. Quadakkers, JOM 67, 2573 (2015).CrossRefGoogle Scholar
  39. 39.
    D. L. Klarstrom, in Materials Design Approach and Experience, J. C. Zhao et al. eds., TMS (2001) pp 297–307; D. L. Klarstrom, NASA Contractor Report.Google Scholar
  40. 40.; R. Fui, S. Zhao, Y. Wang, Q. Li, Y. Ma, F. Lin, C. Chi, Energy Materials 2014, CSM and TMS (2014) pp. 193–202.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • R. I. Olivares
    • 1
  • D. J. Young
    • 2
  • T. D. Nguyen
    • 2
  • P. Marvig
    • 1
  1. 1.CSIRO Energy CentreNewcastleAustralia
  2. 2.School of Materials Science and EngineeringUniversity of New South WalesSydneyAustralia

Personalised recommendations