Oxidation of Metals

, Volume 89, Issue 1–2, pp 251–278 | Cite as

The Effect of Temperature on the Formation of Oxide Scales Regarding Commercial Superheater Steels

  • J. LehmustoEmail author
  • D. Lindberg
  • P. Yrjas
  • L. Hupa
Original Paper


This study addresses the surface changes of three commercial steels (a low alloy ferritic 10CrMo9-10 steel, a Nb-stabilized austenitic AISI347 steel, and a high alloy austenitic Sanicro 28 steel) by comparing the oxide scale thicknesses, chemical compositions, and surface morphologies of samples after pre-oxidation at 200, 500 and 700 °C with different exposure times (5 and 24 h) under humid or dry conditions. With all three steels, the oxide scale thickness increased as functions of temperature and exposure time, the effect of temperature being more prominent than the effect of exposure time. The presence of water resulted in thicker oxide scales at the studied low alloy ferritic steel, whereas in the two austenitic steels, the presence of water increased chromium diffusion to the oxide scale rather than the scale thickness. The oxide layers characterized and analyzed in this paper will be further studied in terms of their abilities to resist corrosion by exposing them under corrosive conditions. The results regarding the corrosion resistance of the steels will be published in a sequel paper.


Pre-oxidation High-temperature oxidation Low alloy ferritic steel Austenitic stainless steel High alloy austenitic stainless steel 



This work has been carried out within the Academy of Finland project “Novel Approaches to Study Corrosion Mechanisms in High-temperature Industrial Processes” (Decision No. 296435). This work has been partly carried out within CLIFF (2014–2017) as part of the activities of Abo Akademi University. Other research partners are VTT Technical Research Centre of Finland Ltd, Lappeenranta University of Technology, Aalto University and Tampere University of Technology. Support from the National Technology Agency of Finland (Tekes), Andritz Oy, Valmet Technologies Oy, Amec Foster Wheeler Energia Oy, UPM-Kymmene Oyj, Clyde Bergemann GmbH, International Paper Inc., and Top Analytica Oy Ab is gratefully acknowledged. The authors would like to thank Mr. Linus Silvander for operating the SEM-apparatus and Mr. Jyrki Juhanoja for operating the XPS-apparatus.


  1. 1.
    M. Spiegel, Materials and Corrosion 50(7) 373 (1999).CrossRefGoogle Scholar
  2. 2.
    L. A. Hansen, H. P. Nielsen, F. J. Frandsen, K. Dam-Johansen, S. Hørlyck and A. Karlsson, Fuel Processing Technology 64(1–3) 189 (2000).CrossRefGoogle Scholar
  3. 3.
    L. Åmand, B. Leckner, D. Eskilsson and C. Tullin, Energy & Fuels 20(3) 1001 (2006).CrossRefGoogle Scholar
  4. 4.
    H. P. Nielsen, F. J. Frandsen, K. Dam-Johansen and L. L. Baxter, Progress in Energy and Combustion Science 26(3) 283 (2000).CrossRefGoogle Scholar
  5. 5.
    D. Bankiewicz, Corrosion behavior of boiler tube materials during combustion of fuels containing Zn and Pb, (Academic Dissertation, Åbo Akademi University, Department of Chemical Engineering, Turku, Finland, 2012).Google Scholar
  6. 6.
    N. Birks, G. H. Meier and F. S. Pettit, Introduction to the High-Temperature Oxidation of Metals, 2nd ed, (Cambridge University Press, Cambridge, 2006).CrossRefGoogle Scholar
  7. 7.
    J. Stringer, Materials Science & Engineering, A: Structural Materials: Properties, Microstructure and Processing A120–A121 129 (1989).CrossRefGoogle Scholar
  8. 8.
    A. S. Khanna, Introduction to High Temperature Oxidation and Corrosion, (ASM International, Ohio, 2002).Google Scholar
  9. 9.
    N. Israelsson, J. Engkvist, K. Hellstroem, M. Halvarsson, J.-E. Svensson and L.-G. Johansson, Oxidation of Metals 83(1–2) 29 (2015).CrossRefGoogle Scholar
  10. 10.
    H. Buscail, S. El Messki, F. Riffard, S. Perrier and C. Issartel, Oxidation of Metals 75(1–2) 27 (2011).CrossRefGoogle Scholar
  11. 11.
    C. W. Bale, E. Bélisle, P. Chartrand, S. A. Decterov, G. Eriksson, A. E. Gheribi, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melançon, A. D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer and M.-A. Van Ende, Calphad 54 35 (2016).CrossRefGoogle Scholar
  12. 12.
    D. R. Baer, M. H. Engelhard, A. S. Lea, P. Nachimuthu, T. C. Droubay, J. Kim, B. Lee, C. Mathews, R. L. Opila, L. V. Saraf, W. F. Stickle, R. M. Wallace and B. S. Wright, Journal of Vacuum Science & Technology A 28(5) 1060 (2010).CrossRefGoogle Scholar
  13. 13.
    H. J. Mathieu, M. Datta and D. Landolt, Journal of Vacuum Science & Technology A 3(2) 331 (1985).CrossRefGoogle Scholar
  14. 14.
    C.-O. A. Olsson, S. Malmgren, M. Gorgoi and K. Edström, Electrochemical and Solid-State Letters 14(1) C1 (2011).CrossRefGoogle Scholar
  15. 15.
    G. Lothongkum, S. Chaikittisilp and A. W. Lothongkum, Applied Surface Science 218 202 (2003).CrossRefGoogle Scholar
  16. 16.
    P. Kofstad, High Temperature Corrosion, (Elsevier Applied Science Publishers Ltd., London and New York, 1988).Google Scholar
  17. 17.
    V. B. Trindade, U. Krupp, Ph E-G Wagenhuber and H.-J. Christ, Materials and Corrosion 56(11) 785 (2005).CrossRefGoogle Scholar
  18. 18.
    B. Pujilaksono, T. Jonsson, H. Heidari, M. Halvarsson, J.-E. Svensson and L.-G. Johansson, Oxidation of Metals 75(3–4) 183 (2011).CrossRefGoogle Scholar
  19. 19.
    E. Jacobsson, Scandinavian Journal of Metallurgy 14 252 (1985).Google Scholar
  20. 20.
    A. Skalli, A. Galerie and M. Caillet, Solid State Ionics 25(1) 27 (1987).CrossRefGoogle Scholar
  21. 21.
    B. Chattopadhyay and G. C. Wood, Oxidation of Metals 2(4) 373 1970.CrossRefGoogle Scholar
  22. 22.
    U. R. Evans, The Corrosion and Oxidation of Metals: First Supplementary Volume, (Edward Arnold Publishers Ltd., London, 1968).Google Scholar
  23. 23.
    R. L. Tapping, R. D. Davidson, T. E. Jackman and J. A. Davies, Surface and Interface Analysis 11(8) 441 (1988).CrossRefGoogle Scholar
  24. 24.
    B. Pujilaksono, T. Jonsson, M. Halvarsson, J.-E. Svensson and L.-G. Johansson, Corrosion Science 52 (5) 1560 (2010).CrossRefGoogle Scholar
  25. 25.
    H. Viitala, I. Galfi and P. Taskinen, Materials and Corrosion 66(9) 851 (2015).CrossRefGoogle Scholar
  26. 26.
    J. V. Cathcart, J. J. Campbell and G. P. Smith, Journal of the Electrochemical Society 105(8) 442 (1958).CrossRefGoogle Scholar
  27. 27.
    K. T. Jacob, C. Shekhar and M. Vinay, Journal of Chemical Engineering & Data 55(11) 4854 (2010).CrossRefGoogle Scholar
  28. 28.
    J. P. Coughlin, U.S. Bureau of Mines Bulletin 542 68 (1954).Google Scholar
  29. 29.
    A. Mittal, G. J. Albertsson, G. S. Gupta, S. Seetharaman and S. Subramanian, Metallurgical and Materials Transactions B 45B 338 (2014).CrossRefGoogle Scholar
  30. 30.
    S. E. Ziemniak, L. M. Anovitz, R. A. Castelli and W. D. Porter, The Journal of Chemical Thermodynamics 39(11) 1474 (2007).CrossRefGoogle Scholar
  31. 31.
    S. Jin and A. Atrens, Applied Physics A A50(3) 287 (1990).CrossRefGoogle Scholar
  32. 32.
    J. Lehmusto, B.-J. Skrifvars, P. Yrjas and M. Hupa, Fuel Processing Technology 105 98 (2013).CrossRefGoogle Scholar
  33. 33.
    M. Halvarsson, J. E. Tang, H. Asteman, J.-E. Svensson and L.-G. Johansson, Corrosion Science 48(8) 2014 (2006).CrossRefGoogle Scholar
  34. 34.
    A. Srisrual, J.-P. Petit, Y. Wouters and A. Galerie, Oxidation of Metals 79(3–4) 337 (2013).CrossRefGoogle Scholar
  35. 35.
    S. R. J. Saunders, M. Monteiro and F. Rizzo, Progress in Materials Science 53(5) 775 (2008).CrossRefGoogle Scholar
  36. 36.
    C. Ostwald and H. J. Grabke, Corrosion Science 46(5) 1113 (2004).CrossRefGoogle Scholar
  37. 37.
    L. Intiso, L.-G. Johansson, S. Canovic, S. Bellini, J.-E. Svensson and M. Halvarsson, Oxidation of Metals 77(5–6) 209 (2012).CrossRefGoogle Scholar
  38. 38.
    H. Comert and J. N. Pratt, The Journal of Chemical Thermodynamics 1612 1145 (1984).CrossRefGoogle Scholar
  39. 39.
    E. B. Rudnyi, E. A. Kaibicheva, L. N. Sidorov, M. T. Varshavskii and A. N. Men, The Journal of Chemical Thermodynamics 22(7) 623 (1990).CrossRefGoogle Scholar
  40. 40.
    C. Proff, T. Jonsson, C. Pettersson, J.-E. Svensson, L.-G. Johansson and M. Halvarsson, Materials at High Temperatures 26(2) 113 (2009).CrossRefGoogle Scholar
  41. 41.
    C. Pettersson, L.-G. Johansson and J.-E. Svensson, Oxidation of Metals 70(5–6) 241 (2008).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Johan Gadolin Process Chemistry CentreAbo Akademi UniversityTurkuFinland

Personalised recommendations