Oxidation of Metals

, Volume 88, Issue 3–4, pp 339–349 | Cite as

High-Temperature Oxidation Behavior of Refractory High-Entropy Alloys: Effect of Alloy Composition

  • Bronislava GorrEmail author
  • Franz Müller
  • Maria Azim
  • Hans-Jürgen Christ
  • Torsten Müller
  • Hans Chen
  • Alexander Kauffmann
  • Martin Heilmaier
Original Paper


The high-temperature oxidation behavior of a new family of refractory high-entropy alloys (HEAs) with compositions of W–Mo–Cr–Ti–Al, Nb–Mo–Cr–Ti–Al and Ta–Mo–Cr–Ti–Al was studied at 1000 and 1100 °C. Based on these equimolar starting compositions, the main incentive of this study was to select the most promising alloy system whose properties may then be successively improved. Despite the high amount of refractory elements, Ta–Mo–Cr–Ti–Al showed good oxidation resistance at 1000 and 1100 °C. Moderate values of mass gain and complex oxidation kinetics were observed for the W- and Nb-containing HEAs. These alloys formed inhomogeneous oxide scales possessing regions with thick and porous layers as well as areas revealing quite thin oxide scales due to the formation of discontinuous Cr- and Al-rich scales. The most promising behavior was shown by the alloy Ta–Mo–Cr–Ti–Al which followed the parabolic rate law for oxide growth due to the formation of a thin and compact Al-rich layer.


High-entropy alloys Refractory metals Oxidation kinetics Oxide scale morphology Oxide evaporation 



The financial support by Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged.


  1. 1.
    J. H. Perepezko, Science 326, 1068 (2009).CrossRefGoogle Scholar
  2. 2.
    R. Syre, Niobium, Molybdenum, Tantalum and Tungsten: A Summary of Their Properties with Recommendation for Research and Development (North Atlantic Treaty Organization, Advisory Group For Aeronautical Research and Development, 1961).Google Scholar
  3. 3.
    L. Huang, X. F. Sun, H. R. Guang, and Z. Q. Hu, Oxidation of Metals 65, 391 (2006).CrossRefGoogle Scholar
  4. 4.
    B. P. Bewlay, M. R. Jackson, and H. A. Lipsitt, Metallurgical and Materials Transactions A 27A, 3801 (1996).CrossRefGoogle Scholar
  5. 5.
    M. Azim, D. Schliephake, C. Hochmuth, B. Gorr, H.-J. Christ, U. Glatzel, and M. Heilmaier, Journal of Minerals 57, 2621 (2015).Google Scholar
  6. 6.
    J. W. Yeh, Y. L. Chen, S. J. Lin, and S. K. Chen, Materials Science Forum 560, 1 (2007).CrossRefGoogle Scholar
  7. 7.
    O. N. Senkov, C. Woodward, and D. B. Miracle, Journal of Minerals 66, 2030 (2014).Google Scholar
  8. 8.
    O. N. Senkov, S. V. Senkova, D. M. Dimiduk, C. Woodward, and D. B. Miracle, Journal of Materials Science 47, 6522 (2012).CrossRefGoogle Scholar
  9. 9.
    C. M. Liu, H. M. Wang, S. Q. Zhang, H. B. Tang, and A. L. Zhang, Journal of Alloys and Compounds 583, 162 (2014).CrossRefGoogle Scholar
  10. 10.
    B. Gorr, M. Azim, H.-J. Christ, T. Mueller, D. Schliephake, and M. Heilmaier, Journal of Alloys and Compounds 624, 270 (2015).CrossRefGoogle Scholar
  11. 11.
    H. Chen, A. Kauffmann, B. Gorr, D. Schliephake, C. Seemüller, J. N. Wagner, H.-J. Christ, and M. Heilmaier, Journal of Alloys and Compounds 661, 206 (2016).CrossRefGoogle Scholar
  12. 12.
    B. Gorr, M. Azim, H.-J. Christ, H. Chen, D. V. Szabo, A. Kauffmann, and M. Heilmaier, Metallurgical and Materials Transactions A 47A, 961 (2016).CrossRefGoogle Scholar
  13. 13.
    B. Gorr, F. Mueller, H.-J. Christ, T. Mueller, H. Chen, A. Kauffmann, and M. Heilmaier, Journal of Alloys and Compounds 688, 468 (2016).CrossRefGoogle Scholar
  14. 14.
    F. Bondioli, A. M. Ferrari, C. Leonelli, L. Manfredini, L. Linati, and P. Musterelli, Journal of the American Ceramic Society 83, 2036 (2000).CrossRefGoogle Scholar
  15. 15.
    J. L. Waring, Journal of the American Ceramic Society—Discussion and Notes 48, 493 (1965).CrossRefGoogle Scholar
  16. 16.
    S. Matthews, F. Taliana, and B. James, Surface & Coatings Technology 212, 109 (2012).CrossRefGoogle Scholar
  17. 17.
    S. Matthews, Surface & Coatings Technology 206, 3323 (2012).CrossRefGoogle Scholar
  18. 18.
    N. M. Geyer, Protection of Refractory Metals Against Atmospheric Environments, Assessed 1 March 2016.
  19. 19.
    E. A. Gulbransen, K. F. Andrew, and F. A. Brassant, Journal of the Electrochemical Society 110, 952 (1963).CrossRefGoogle Scholar
  20. 20.
    E. A. Gulbransen, K. F. Andrew, and F. A. Brassant, Journal of the Electrochemical Society 111, 103 (1961).CrossRefGoogle Scholar
  21. 21.
    C. S. Giggins and F. S. Pettit, Journal of Electrochemical Society 118, 1782 (1971).CrossRefGoogle Scholar
  22. 22.
    W. D. Klopp, Recent Developments in Chromium and Chromium Alloys, NASA-Report TM X-1867 (1969).Google Scholar
  23. 23.
    R. P. Elliot, Transaction of the ASM 52, 900 (1960).Google Scholar
  24. 24.
    H. Jehn and E. Olzi, Journal of the Less Common Metals 27, 297 (1972).CrossRefGoogle Scholar
  25. 25.
    J. L. Murray and H. A. Wriedt, Journal of Phase Equilibria 8, 148 (1987).CrossRefGoogle Scholar
  26. 26.
    R. L. Wagner, Metallurgical Transactions 1, 3365 (1970).Google Scholar
  27. 27.
    A. Taylor, Research for Solubility of Interstitials in Columbium Part III. A Study of Columbium-Rich Alloys in the Ternary Systems Cb-Mo-O, Cb-Mo-N and Cb-Mo-C, Technical Report, Westinghouse Research Labs Pittsburgh (1966).Google Scholar
  28. 28.
    F. E. Bacon and P. M. Moanfeldt, Reaction with common gases, Columbium and Tantalum (Wiley, New York, 1963).Google Scholar
  29. 29.
    D. E. Weaver, The diffusivity and Solubility of Nitrogen in Molybdenum and Trapping of Nitrogen by Carbon in Molybdenum, PhD Thesis, Lawrence Livermore Laboratory, University of California (1972).Google Scholar
  30. 30.
    B. Holmberg, Acta Chemica Scandinavica 16, 1255 (1992).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Bronislava Gorr
    • 1
    Email author
  • Franz Müller
    • 1
  • Maria Azim
    • 1
  • Hans-Jürgen Christ
    • 1
  • Torsten Müller
    • 2
  • Hans Chen
    • 3
  • Alexander Kauffmann
    • 3
  • Martin Heilmaier
    • 3
  1. 1.Institut für WerkstofftechnikUniversität SiegenSiegenGermany
  2. 2.Institut für Bau- und WerkstoffchemieSiegenGermany
  3. 3.Institut für Angewandte Materialien-WerkstoffkundeKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations