Advertisement

Oxidation of Metals

, Volume 87, Issue 1–2, pp 199–214 | Cite as

Deposit Build-up and Corrosion in a Copper Flash Smelting Heat Recovery Boiler

  • Juho LehmustoEmail author
  • Daniel Stenlund
  • Mari Lindgren
  • Patrik Yrjas
Original Paper

Abstract

The aim of the work was to improve the understanding of deposit formation and corrosion in a copper flash smelting plant, focusing on the effects of process gas temperature (400–900 °C) and heat-transfer surface temperature (160–320 °C) on deposit formation and corrosion rate. The rate of build-up increased as a function of process gas temperature, which was explained by a larger extent of sintering at higher temperatures, resulting in slagging and thus, in better adhesion of particles hitting the surface. The corrosion rate increased as a function of process gas temperature. Iron sulphate (FeSO4 or Fe2(SO4)3) was found at the interface between the deposit and the corroded metal surface, suggesting that corrosion was induced by sulphuric acid (H2SO4) from the reaction between SO3 (originating from SO2 in the process gas) and water vapour.

Keywords

Flash smelting Heat recovery boiler Deposit build-up rate Dew point corrosion 

Notes

Acknowledgements

The authors would like to thank Mr. Janne Hautamäki and Mr. Tor Laurén for the crucial assistance they provided during the measurement campaigns. Boliden Harjavalta and Outotec are gratefully acknowledged for the financial support.

References

  1. 1.
    M. E. Schelsinger, Extractive Metallurgy of Copper, (Elsevier, Amsterdam, 2011).Google Scholar
  2. 2.
    T. Ranki-Kilpinen, Sulphation of cuprous and cupric oxide dusts and heterogeneous copper matte particles in simulated flash smelting heat recovery boiler conditions, PhD Thesis, Helsinki University of Technology, 2004.Google Scholar
  3. 3.
    A. Brink, B. Li and M. Hupa, Progress in Computational Fluid Dynamics 9, (8), 447 (2009).CrossRefGoogle Scholar
  4. 4.
    B. Li, A. Brink and M. Hupa, Progress in Computational Fluid Dynamics 9, (8), 453 (2009).CrossRefGoogle Scholar
  5. 5.
    A. Bahadori, Applied Thermal Engineering 31, (8–9), 1457 (2011).CrossRefGoogle Scholar
  6. 6.
    E. R. Lovejoy, D. R. Hanson and L. G. Huey, Journal of Physical Chemistry 100, (51), 19911 (1996).CrossRefGoogle Scholar
  7. 7.
    K. Morokuma and C. Muguruma, Journal of the American Chemical Society 116, (22), 10316 (1994).CrossRefGoogle Scholar
  8. 8.
    J. T. Jayne, U. Poeschl, Y. Chen, D. Dai, L. Molina, D. R. Worsnop, C. E. Kolb and M. J. Molina, Journal of Physical Chemistry A 101, (51), 10000 (1997).CrossRefGoogle Scholar
  9. 9.
    A. G. Okkes, Hydrocarbon Processing 66, (7), 53 (1987).Google Scholar
  10. 10.
    J. M. Blanco and F. Pena, Applied Thermal Engineering 28, (7), 777 (2008).CrossRefGoogle Scholar
  11. 11.
    R. Ebara, F. Tanaka and M. Kawasaki, Engineering Failure Analysis 33, 29 (2013).CrossRefGoogle Scholar
  12. 12.
    A. Brink, T. Laurén, P. Yrjas, M. Hupa and J. Friesenbichler, Fuel Processing Technology 88, (11–12), 1129 (2007).CrossRefGoogle Scholar
  13. 13.
    D. Bankiewicz, E. Alonso-Herranz, P. Yrjas, T. Laurén, H. Spliethoff and M. Hupa, Energy & Fuels 25, (8), 3476 (2011).CrossRefGoogle Scholar
  14. 14.
    T. Markova, B. Boyanov, S. Pironkov and N. Shopov, Journal of Mining and Metallurgy 36, (3–4B), 195 (2000).Google Scholar
  15. 15.
    R. J. St Eloi, C. J. Newman and G. Macfarlane, CIM Bulletin 87, (977), 77 (1994).Google Scholar
  16. 16.
    S. Prasad and B. D. Pandey, Canadian Metallurgical Quarterly 38, (4), 237 (1999).Google Scholar
  17. 17.
    P. Safe, D.M. Jones, Sulfide smelting ´98, TMS Annual Meeting, San Antonio Texas, 401 (1998).Google Scholar
  18. 18.
    F. D. Stevenson and C. E. Wicks, Bureau of Mines Report of Investigations 6212, 1 (1963).Google Scholar
  19. 19.
    C. Samuelsson and B. Bjoerkman, Scandinavian Journal of Metallurgy 27, (2), 54 (1998).Google Scholar
  20. 20.
    D.R. Swinbourne, E. Simak, A. Yazawa, Sulfide smelting 2002, Proceedings of a symposium held during the TMS Annual Meeting, Seattle, WA, United States, Feb. 17–21, 2002, 247 (2002).Google Scholar
  21. 21.
    T. Kurosawa, T. Yagihashi, K. Togo and T. Kato, Transactions of National Research Institute for Metals 15, (3), 130 (1973).Google Scholar
  22. 22.
    T. L. Jorgensen, H. Livbjerg and P. Glarborg, Chemical Engineering Science 62, (16), 4496 (2007).CrossRefGoogle Scholar
  23. 23.
    D. Fleig, K. Andersson and F. Johnsson, Industrial & Engineering Chemistry Research 51, (28), 9483 (2012).CrossRefGoogle Scholar
  24. 24.
    P. M. Foster, Atmospheric Environment 3, (2), 157 (1969).CrossRefGoogle Scholar
  25. 25.
    P. Marier and H. P. Dibbs, Thermochimica Acta 8, (1–2), 155 (1974).CrossRefGoogle Scholar
  26. 26.
    D. J. Bayless, J. Jewmaidang, S. Tanneer and R. Birru, Proceedings of the Combustion Institute 28, (Pt. 2), 2499 (2000).CrossRefGoogle Scholar
  27. 27.
    L. P. Belo, L. K. Elliot, R. J. Stanger, R. Spörl, K. V. Shah, J. Maier and T. F. Wall, Energy & Fuels 28, (11), 7243 (2014).CrossRefGoogle Scholar
  28. 28.
    K. Kletzl, Wochenblatt fuer Papierfabrikation 82, 949 (1954).Google Scholar
  29. 29.
    D. Fleig, M. U. Alzueta, F. Normann, M. Abián, K. Andersson and F. Johnsson, Combustion and Flame 160, (6), 1142 (2013).CrossRefGoogle Scholar
  30. 30.
    F. Verhoff and J. Banchero, Chemical Engineering Process 70, (8), 71 (1974).Google Scholar
  31. 31.
    R. Backman, Sodium and sulfur chemistry in combustion gases, PhD Thesis, Åbo Akademi University, 1989.Google Scholar
  32. 32.
    S. Sarkar, Journal of Metals 34, (10), 43 (1982).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Juho Lehmusto
    • 1
    Email author
  • Daniel Stenlund
    • 1
  • Mari Lindgren
    • 2
  • Patrik Yrjas
    • 1
  1. 1.Laboratory of Inorganic Chemistry, Johan Gadolin Process Chemistry CentreAbo Akademi UniversityTurkuFinland
  2. 2.Outotec Research CenterPoriFinland

Personalised recommendations