Advertisement

Oxidation of Metals

, Volume 85, Issue 5–6, pp 565–598 | Cite as

The Effects of KCl, NaCl and K2CO3 on the High-Temperature Oxidation Onset of Sanicro 28 Steel

  • Jingxin SuiEmail author
  • Juho Lehmusto
  • Mikael Bergelin
  • Mikko Hupa
Original Paper

Abstract

The present study investigates the early stages in the oxidation process of Sanicro 28 (Fe31Cr27Ni) stainless steel when exposed to an alkali salt (KCl, NaCl or K2CO3) for 2 h at 450 and 535 °C. After the exposure, the oxidized samples were analyzed with a combinatory method (CA, XPS and SEM–EDX). It was found that all three salts were corrosive, and the overall oxidation reaction rate was much higher at 535 °C than at 450 °C. There were clear differences in terms of the impact of cations (Na+, K+) and anions (Cl, CO3 2−) on the initial corrosion process at both temperatures. When focusing on the cations, the presence of potassium ions resulted in a higher rate of chromate formation than in the presence of sodium ions. When studying the effect of anions, the oxidation of iron and chromium occurred at higher rates in the presence of both chloride salts than in the presence of the carbonate salt, and chloride salts seemed to possess higher diffusion rate in the gas phase and along the surface than carbonate salts. Moreover, at the higher temperature of 535 °C, the formed chromate reacted further to chromium oxide, and an ongoing oxidation process of iron and chromium was identified with a significantly higher reaction rate than at 450 °C.

Keywords

High temperature oxidation Alkali salts Sanicro 28 Corrosion onset 

Notes

Acknowledgments

The author would like to thank Mr. Linus Silvander for operating the SEM-EDXA apparatus and Mr. Jyrki Juhanoja from Top Analytica Oy Ab for operating the XPS apparatus. This work has been carried out within CLIFF (2014-2017) as part of the activities of Åbo Akademi University. Other research partners are VTT Technical Research Centre of Finland, Lappeenranta University of Technology, Aalto University and Tampere University of Technology. Support from the National Technology Agency of Finland (Tekes), Andritz Oy, Valmet Power Oy, Foster Wheeler Energia Oy, UPM-Kymmene Oyj, Clyde Bergemann GmbH, International Paper Inc., 3motion Oy and Top Analytica Oy Ab is gratefully acknowledged.

References

  1. 1.
    Official Statistics of Finland (OSF): Production of electricity and heat. Statistics Finland, Helsinki (2013).Google Scholar
  2. 2.
    R. A. Antunes and M. C. L. de Oliveira, Corrosion Science 76, 6 (2013).CrossRefGoogle Scholar
  3. 3.
    B. J. Skrifvars, R. Backman, M. Hupa, K. Salmenoja and E. Vakkilainen, Corrosion Science 50, 1274 (2008).CrossRefGoogle Scholar
  4. 4.
    M. Spiegel, Materials and Corrosion 50, 373 (1999).CrossRefGoogle Scholar
  5. 5.
    H. P. Nielsen, F. J. Frandsen, K. Dam-Johansen, et al., Progress in Energy and Combustion Science 26, 283 (2000).CrossRefGoogle Scholar
  6. 6.
    S. Karlsson, J. Pettersson, L. G. Johansson and J. E. Svensson, Oxidation of Metals 78, 83 (2012).CrossRefGoogle Scholar
  7. 7.
    D. Bankiewicz, S. Enestam, P. Yrjas, et al., Fuel Processing Technology 105, 89 (2013).CrossRefGoogle Scholar
  8. 8.
    M. Öhman, A. Nordin, B. J. Skrifvars, et al., Energy & Fuels 14, 169 (2000).CrossRefGoogle Scholar
  9. 9.
    C. Pettersson, T. Jonsson, C. Proff, M. Halvarsson, J. E. Svensson and L. G. Johansson, Oxidation of Metals 74, 93 (2010).CrossRefGoogle Scholar
  10. 10.
    G. Busca, V. Lorenzelli, G. Ramis and R. J. Willey, Langmuir 9, 1492 (1993).CrossRefGoogle Scholar
  11. 11.
    C. Pettersson, J. Pettersson, H. Asteman, J. E. Svensson and L. G. Johansson, Corrosion Science 48, 1368 (2006).CrossRefGoogle Scholar
  12. 12.
    C. Pettersson, L. G. Johansson and J. E. Svensson, Oxidation of Metals 70, 241 (2008).CrossRefGoogle Scholar
  13. 13.
    S. Enestam, D. Bankiewicz, J. Tuiremo, K. Mäkeläa and M. Hupa, Fuel 104, 294 (2013).CrossRefGoogle Scholar
  14. 14.
    J. Lehmusto, P. Yrjas, B. J. Skrifvars and M. Hupa, Fuel Processing Technology 104, 253 (2012).CrossRefGoogle Scholar
  15. 15.
    J. Lehmusto, B. J. Skrifvars, P. Yrjas, et al., Fuel Processing Technology 105, 98 (2013).CrossRefGoogle Scholar
  16. 16.
    J. Pettersson, N. Folkeson, L. G. Johansson and J. E. Svensson, Oxidation of Metals 76, 93 (2011).CrossRefGoogle Scholar
  17. 17.
    A. Ruh and M. Spiegel, Corrosion Science 48, 679 (2006).CrossRefGoogle Scholar
  18. 18.
    J. Lehmusto, D. Lindberg, P. Yrjas, B. J. Skrifvars and M. Hupa, Corrosion Science 59, 55 (2012).CrossRefGoogle Scholar
  19. 19.
    T. Jonsson, N. Folkeson, J. E. Svensson, L. G. Johansson and M. Halvarsson, Corrosion Science 53, 2233 (2011).CrossRefGoogle Scholar
  20. 20.
    N. Israelsson, K. Hellström, J. E. Svensson and L. G. Johansson, Oxidation of Metals 83, 1 (2014).CrossRefGoogle Scholar
  21. 21.
    K. Hladky and J. Dawson, Corrosion Science 21, 317 (1981).CrossRefGoogle Scholar
  22. 22.
    J. Sui, J. Lehmusto, M. Bergelin and M. Hupa, Oxidation of Metals 82, 437 (2014).CrossRefGoogle Scholar
  23. 23.
    D. R. Baer, M. H. Engelhard, A. S. Lea, et al., Journal of Vacuum Science & Technology A 28, 1060 (2010).CrossRefGoogle Scholar
  24. 24.
    A. Hermas, Corrosion Science 50, 2498 (2008).CrossRefGoogle Scholar
  25. 25.
    C. Proff, T. Jonsson, C. Pettersson, J.-E. Svensson, L.-G. Johansson and M. Halvarsson, Materials at High Temperatures 26, 113 (2009).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Åbo Akademi UniversityTurkuFinland

Personalised recommendations