Oxidation of Metals

, Volume 85, Issue 3–4, pp 245–262 | Cite as

High-Temperature Oxidation of Zircaloy-4 in Oxygen–Nitrogen Mixtures

  • Martin Steinbrück
  • Steffi Schaffer
Original Paper


Isothermal oxidation experiments with cladding tube segments of Zircaloy-4 (Zr-1.3%Sn) in oxygen–nitrogen model mixtures were performed at 800, 1000, and 1200 °C for 6, 1 h, and 15 min, respectively. The gas compositions varied between 0 and 100 vol% nitrogen including 1 and 99 vol%. A strong accelerating effect of nitrogen on the oxidation kinetics was seen for a wide range of boundary conditions. At 800 °C, oxidation in all mixtures with 1–99 % nitrogen resulted in higher reaction rates compared to the pure gases, especially after transition from protective to non-protective oxide scales. At 1000 and 1200 °C, only starvation of oxygen in mixtures with low oxygen contents resulted in lower rates compared to pure oxygen. The oxide scales formed in the mixtures were very porous due to the formation of zirconium nitride at the metal-oxide interface and its oxidation during continuing reaction. The extension of the oxide-nitride zone increased with temperature and with nitrogen content in the gas mixture. Nitrogen seems also to affect the pre-transition reaction kinetics. The mechanism of the faster oxidation kinetics of zirconium alloys in atmospheres containing nitrogen will be discussed in this paper.


Zircaloy-4 Oxidation High temperature Oxygen–nitrogen Thermo-gravimetry 


  1. 1.
    M. Steinbrück, M. Große, L. Sepold and J. Stuckert, Nuclear Engineering and Design 240, 1714–1727 (2010).CrossRefGoogle Scholar
  2. 2.
    G. Schanz, B. Adroguer and A. Volchek, Nuclear Engineering and Design 232, 75–84 (2004).CrossRefGoogle Scholar
  3. 3.
    M. Grosse, Nuclear Technology 170, ,272 (2010).Google Scholar
  4. 4.
    M. Steinbrück, Oxidation of Metals 70, 317–329 (2008).CrossRefGoogle Scholar
  5. 5.
    M. Steinbrück, N. Vér and M. Grosse, Oxidation of Metals 76, 215–232 (2011).CrossRefGoogle Scholar
  6. 6.
    J. H. Back, K. B. Park and Y. H. Jeong, Journal of Nuclear Materials 335, 443–456 (2004).CrossRefGoogle Scholar
  7. 7.
    M. Steinbrück, et al., Progress in Nuclear Energy 52, 19–36 (2010).CrossRefGoogle Scholar
  8. 8.
    D. A. Powers, L. N. Kmetyk and R. C. Schmidt, A Review of Technical Issues of Air Ingression during Severe Reactor Accidents. Report NUREG/CR-6218, SAND94-0731, Sandia National Lab., (1994).Google Scholar
  9. 9.
    I. Shepherd et al., Oxidation Phenomena in Severe Accidents (OPSA). Final Report, INV-OPSA(99)-P008, (2000).Google Scholar
  10. 10.
    M. Steinbrück, A. Miassoedov, G. Schanz, L. Sepold, U. Stegmaier and J. Stuckert, Nuclear Engineering and Design 236, 1709–1719 (2006).CrossRefGoogle Scholar
  11. 11.
    M. Steinbrück and M. Böttcher, Journal of Nuclear Materials 414, 276–285 (2011).CrossRefGoogle Scholar
  12. 12.
    M. Steinbrück, Journal of Nuclear Materials 392, 531–544 (2009).CrossRefGoogle Scholar
  13. 13.
    C. Duriez, T. Dupon, B. Schmet and F. Enoch, Journal of Nuclear Materials 380, 30–45 (2008).CrossRefGoogle Scholar
  14. 14.
    C. Duriez, M. Steinbrück, D. Ohai, T. Meleg, J. Birchley and T. Haste, Nuclear Engineering and Design 239, 244–253 (2009).CrossRefGoogle Scholar
  15. 15.
    M. Lasserre, V. Peres, M. Pijolat, O. Coindreau, C. Duriez and J.-P. Mardon, Materials and Corrosion 65, 250–259 (2014).CrossRefGoogle Scholar
  16. 16.
    M. Steinbrück, U. Stegmaier and T. Ziegler, Prototypical Experiments on Air Oxidation of Zircaloy-4 at High Temperatures. Forschungszentrum Karlsruhe, Report FZKA, 7257 (2007).Google Scholar
  17. 17.
    N. Birks, G. H. Meier and F. S. Pettit, Introduction to the High-Temperature Oxidation of Metals, 2nd ed, (Cambridge University Press, Cambridge, 2006). ISBN 978-0-521-48042-0.Google Scholar
  18. 18.
    M. Lerch, Journal of the American Ceramic Society 79, 2641–2644 (1996).CrossRefGoogle Scholar
  19. 19.
    J.-S. Lee, M. Lerch and J. Maier, Journal of Solid State Chemistry 179, 270–277 (2006).CrossRefGoogle Scholar
  20. 20.
    M. Lerch, et al., Progress in Solid State Chemistry 37, 81–131 (2009).CrossRefGoogle Scholar
  21. 21.
    L. Gribaudo, D. Arias and J. Abriata, Journal of Phase Equilibria 15, 441–449 (1994).CrossRefGoogle Scholar
  22. 22.
    P. Hofmann, S. Hagen, G. Schanz and A. Skokan, Chemical Interactions of Reactor Core Materials up to very High Temperatures. Report KFK-4485, Karlsruhe, (1989).Google Scholar
  23. 23.
    P. Liang, N. Dupin, S. G. Fries, H. J. Seifert, I. Ansara, H. L. Lukas and F. Aldinger, Zeitschrift für Metallkunde 92, 747–756 (2001).Google Scholar
  24. 24.
    H. M. Chung and T. F. Kassner, Journal of Nuclear Materials 84, 327–339 (1979).CrossRefGoogle Scholar
  25. 25.
    N. Dupin, I. Ansara, C. Servant, C. Toffolon, C. Lemaignan and J. C. Brachet, Journal of Nuclear Materials 275, 287–295 (1999).CrossRefGoogle Scholar
  26. 26.
    E. L. Dreizin, V. K. Hoffmann and E. P. Viecenzi, Journal of Materials Research 14, 3840–3842 (1999).CrossRefGoogle Scholar
  27. 27.
    A. Ermoline, M. Schoenitz and E. L. Dreizin, Journal of Materials Research 21, 320–328 (2006).CrossRefGoogle Scholar
  28. 28.
    M. Lerch, Journal of Materials Science Letters 17, 441–443 (1998).CrossRefGoogle Scholar
  29. 29.
    I. Barin, Thermochemical Data of Pure Substances, (VCH Verlagsgesellschaft, Weinheim, 1995).CrossRefGoogle Scholar
  30. 30.
    M. Steinbrück, Journal of Nuclear Materials 447, 46–55 (2014).CrossRefGoogle Scholar
  31. 31.
    S. Park, L. Fernandez-Moguel, M. Steinbrück, J. Birchley, H. -M. Prasser and H. J. Seifert, A mechanism of nitridation process in the Zr-O-N system during air oxidation. The Nuclear Materials Conference NUMAT2014, 27–30 Oct 2014, Clearwater Beach, Florida.Google Scholar
  32. 32.
    M. Steinbrück, F. Oliveira da Silva and H. J. Seifert, High-temperature oxidation of Zircaloy-4 in steam-nitrogen mixtures. The Nuclear Materials Conference NUMAT2014, 27–30 Oct 2014, Clearwater Beach, Florida.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute for Applied Materials IAM-AWPKarlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany

Personalised recommendations