Oxidation of Metals

, Volume 84, Issue 1–2, pp 211–231 | Cite as

Evaluation of the Mechanical Properties of Naturally Grown Multilayered Oxides Formed on HCM12A Using Small Scale Mechanical Testing

  • M. D. Abad
  • S. ParkerEmail author
  • D. Frazer
  • M. Rebelo de Figueiredo
  • A. Lupinacci
  • K. Kikuchi
  • P. Hosemann
Original Paper


The microstructure and mechanical integrity of protective multilayered oxide films grown in liquid metal on F/M steel HCM12A was investigated utilizing Raman spectroscopy, nanoindentation and micro-cantilever testing methods. The Raman spectra showed a Fe3O4 outer layer and a Cr-rich spinel structure inner layer. The nanoindentation results showed a higher hardness value for the inner layer than for the outer layer. In addition, the hardness of the diffusion layer in between the inner layer and the bulk steel was measured. Quantitative fracture properties were obtained of the steel/oxide interface and within the oxide layers utilizing micro-cantilever testing. Furthermore the strength and elastic properties of the multilayered oxide film were measured and it was found that the porous structure in the inner Fe–Cr oxide limits the integrity of the steel/oxide interface.


Oxide coatings Raman Nanoindentation Micro-cantilever Fracture toughness 



The Authors thank the NRC faculty development grant NRC-38-09-948 for providing funding for this work. This material is based upon work supported by the Department of Energy under Award Number DE-EE0005941 as well as the nuclear energy university program (NEUP). The authors would also like to thank Biomolecular Nanotechnology Center (BNC) at UC Berkeley for the use for the SEM/FIB facilities.


  1. 1.
    J. Zhang and N. Li, Corrosion Science 49, 2007 (4154).CrossRefGoogle Scholar
  2. 2.
    J. Zhang and N. Li, Journal of Nuclear Materials 373, 2008 (351).CrossRefGoogle Scholar
  3. 3.
    D. Frazer, E. Stergar, C. Cionea and P. Hosemann, Energy Procedia 49, 2014 (627).CrossRefGoogle Scholar
  4. 4.
    V. Tsisar, C. Schroer, O. Wedemeyer, A. Skrypnik and J. Konys, Journal of Nuclear Materials 454, 2014 (332).CrossRefGoogle Scholar
  5. 5.
    L. Martinell, F. Ballbaud-Celerier and A. Teriain, Corrosion Science 50, 2008 (2549).CrossRefGoogle Scholar
  6. 6.
    P. Hosemann, R. Dickerson, P. Dickerson, N. Li and S. A. Maloy, Corrosion Science 66, 2013 (196).CrossRefGoogle Scholar
  7. 7.
    P. Hosemann, C. Hofer, G. Hlawacek, N. Li, S. A. Maloy and C. Teichert, Journal of Nuclear Materials 421, 2012 (140).CrossRefGoogle Scholar
  8. 8.
    J. Zhang, P. Hosemann and S. A. Maloy, Journal of Nuclear Materials 404, 2010 (82).CrossRefGoogle Scholar
  9. 9.
    J. Zhang, N. Li and Y. Chen, Journal of Nuclear Materials 342, 2005 (1).CrossRefGoogle Scholar
  10. 10.
    F. J. Martin, L. Soler, F. Hernandez and D. Gomez-Briceno, Journal of Nuclear Materials 335, 2004 (194).CrossRefGoogle Scholar
  11. 11.
    V. Shankar, J. Rao and I. Lim, Soon Hwang, L.K. Singhal. Corrosion Science 63, 2012 (113).CrossRefGoogle Scholar
  12. 12.
    E. Yamaki, K. Ginestar and L. Martinelli, Corrosion Science 53, 2011 (3075).CrossRefGoogle Scholar
  13. 13.
    C. Schroer, A. Skrypnik, O. Wedemeyer and J. Konys, Corrosion Science 61, 2012 (63).CrossRefGoogle Scholar
  14. 14.
    D. Di Maio and S. G. Roberts, Journal of Materials Research 20, 2005 (299).CrossRefGoogle Scholar
  15. 15.
    C. Kapsalis, G. Schmitt, R.Feser, B. Sagebiel, S. Wilmes, M. Macziek, New Investigations on Critical Wall Shear Stresses of CuNi Alloys in Natural and Artificial Seawater. EUROCORR (Stockholm 11).Google Scholar
  16. 16.
    G. Schmitt and M. Bakalli, in Shreir’s Corrosion, vol. 2, 4th ed, eds. J. Richardson, et al. (Elsevier, Amsterdam, 2010), pp. 954–987.CrossRefGoogle Scholar
  17. 17.
    G. Schmitt and M. Bakalli, Power Plant Chemistry 9, 2007 (89).Google Scholar
  18. 18.
    G. Schmitt and M. Bakalli, Materials and Corrosion 59, 2008 (181).CrossRefGoogle Scholar
  19. 19.
    J. Bischoff and A. T. Motta, Journal of Nuclear Materials 424, 2012 (261).CrossRefGoogle Scholar
  20. 20.
    J. Bischoff and A. T. Motta, Journal of Nuclear Materials 430, 2012 (171).CrossRefGoogle Scholar
  21. 21.
    L. Tan, M. T. Machut, K. Sridharan and T. R. Allen, Journal of Nuclear Materials 371, 2007 (161).CrossRefGoogle Scholar
  22. 22.
    P. Ampornrat and G. S. Was, Journal of Nuclear Materials 371, 2007 (1).CrossRefGoogle Scholar
  23. 23.
    C. Forsberg, Progress in Nuclear Energy 47, 2005 (32).CrossRefGoogle Scholar
  24. 24.
    T. Mizuno and H. Niwa, Nuclear Technology 146, 2004 (155).Google Scholar
  25. 25.
    L. Brissonneau, F. Beauchamp, O. Morier, C. Schroer, J. Konys, A. Kobzova, F. Di Gabriele and J.-L. Courouau, Journal of Nuclear Materials 415, 2011 (348).CrossRefGoogle Scholar
  26. 26.
    J. S. Zhang and N. Li, Nuclear Technology 144, 2003 (379).Google Scholar
  27. 27.
    L. Martinelli, F. Balbaud-Célérier, A. Terlain, S. Bosonnet, G. Picard and G. Santarini, Corrosion Science 50, 2008 (2537).CrossRefGoogle Scholar
  28. 28.
    L. Martinelli, F. Balbaud-Célérier, G. Santarini, G. Moulin, J. Favergeon, A. Terlain, M. Tabarant, S. Delpech and G. Picard, Corrosion Science 50, 2008 (2523).CrossRefGoogle Scholar
  29. 29.
    G. Müller, G. Schumacher and F. Zimmermann, Journal of Nuclear Materials 278, 2000 (85).CrossRefGoogle Scholar
  30. 30.
    P. Hosemann, M. Hawly, D. Koury, J. G. Swadener, J. Welch, A. L. Johnson, G. Mori and N. Li, Journal of Nuclear Materials 375, 2008 (323).CrossRefGoogle Scholar
  31. 31.
    E. Yamaki and K. Kikuchi, Journal of Nuclear Materials 398, 2010 (153).CrossRefGoogle Scholar
  32. 32.
    K. Kikuchi, A. K. Rivai, S. Saito, A. M. Bolind and A. Kogure, Journal of Nuclear Materials 431, 2012 (120).CrossRefGoogle Scholar
  33. 33.
    K. Kikuchi, N. Okada, M. Kato, H. Uchida and S. Saito, Journal of Nuclear Materials 450, 2014 (237).CrossRefGoogle Scholar
  34. 34.
    M. Schütze, P. F. Tortorelli and I. G. Wright, Oxidation of Metals 73, 2010 (398).CrossRefGoogle Scholar
  35. 35.
    J. Armitt, D. R. Holmes, M. I. Manning, D. B. Meadowcroft, and E. Metcalfe, The Spalling of Steam Grown Oxide from Superheater and Reheater Tube Steels, EPRI Report No. FP 686 (1978).Google Scholar
  36. 36.
    P. L. Harrison, Corrosion Science 7, 1967 (789).CrossRefGoogle Scholar
  37. 37.
    M. Nagl, W. Evans, D. Hall and S. Saunders, Journal de Physique IV 3, 1993 (933).CrossRefGoogle Scholar
  38. 38.
    J. Robertson and M. I. Manning, Materials Science and Technology 6, 1990 (81).CrossRefGoogle Scholar
  39. 39.
    X. Zhao, R. M. Langford, J. Tan and P. Xiao, Scripta Materialia 59, 2008 (39).CrossRefGoogle Scholar
  40. 40.
    D. E. J. Armstrong, M. E. Rogers and S. G. Roberts, Scripta Materialia 61, 2009 (741).CrossRefGoogle Scholar
  41. 41.
    B. L. Boyce, J. R. Michael and P. G. Kotula, Acta Materialia 52, 2004 (1609).CrossRefGoogle Scholar
  42. 42.
    Y. Yang, H. H. Ruan, J. Lu, N. Yao, W. L. Shan and W. O. Soboyejo, Experimental Mechanics 49, 2009 (731).CrossRefGoogle Scholar
  43. 43.
    D.E.J. Armstrong. PFMC/FEMaS Conference Proceedings (2011).Google Scholar
  44. 44.
    P. Hosemann, J. G. Swadener, J. Welch and N. Li, Journal of Nuclear Materials 377, 2008 (201).CrossRefGoogle Scholar
  45. 45.
    Y. Zhao, H. Dai and W. Jin, Corrosion Science 65, 2012 (163).CrossRefGoogle Scholar
  46. 46.
    W. C. Oliver and G. M. Pharr, Journal of Materials Research 7, 1992 (1564).CrossRefGoogle Scholar
  47. 47.
    K. F. McCarty and D. R. Boehme, Journal of Solid State Chemistry 79, 1989 (19).CrossRefGoogle Scholar
  48. 48.
    G. Hilson, K. R. Hallam and P. E. J. Flewitt, Mat. Sci. Forum 524–525, 2006 (957).CrossRefGoogle Scholar
  49. 49.
    J. Mougin, N. Rosman, G. Lucazeau and A. Galerie, Journal of Raman Spectroscopy 32, 2001 (739).CrossRefGoogle Scholar
  50. 50.
    B.D. Hosterman, Raman spectroscopic study of solid solution spinel oxides, PhD thesis, University of Nevada, Las Vegas, 2011.Google Scholar
  51. 51.
    J. Kim, K. J. Choi, C. B. Bahn and J. H. Kim, Journal of Nuclear Materials 449, 2014 (181).CrossRefGoogle Scholar
  52. 52.
    D. Chicot, J. Mendoza, A. Zaoui, G. Louis, V. Lepingle, F. Roudet and J. Lesage, Materials Chemistry and Physics 129, 2011 (862).CrossRefGoogle Scholar
  53. 53.
    A. M. Jubb and H. C. Allen, ACS Applied Materials and Interfaces 2, 2010 (2804).CrossRefGoogle Scholar
  54. 54.
    O. N. Shebanova and P. Lazor, Journal of Raman Spectroscopy 34, 2003 (845).CrossRefGoogle Scholar
  55. 55.
    L. V. Gasparov, D. B. Tanner, D. B. Romero, H. Berger, G. Margaritondo and L. Forro, Physical Review B 62, 2000 (7939).CrossRefGoogle Scholar
  56. 56.
    T. Miyazawa, S. Uchida, T. Satoh, Y. Morishima, T. Hirose, Y. Satoh, K. IInuma, Y. Wada, H. Hosokawa and N. Usui, Journal of Nuclear Science and Technology 42, 2005 (233).CrossRefGoogle Scholar
  57. 57.
    M. Proy, M. V. Utrilla, E. Otero, B. Bouchaud and F. Pedraza, Journal of Materials Engineering and Performance 23, 2014 (2847).CrossRefGoogle Scholar
  58. 58.
    A. Yogi and D. Varshney, Journal of Advanced Ceramics 2, 2013 (360).CrossRefGoogle Scholar
  59. 59.
    I. Chamritski and G. Burns, Journal of Physical Chemistry B 109, 2005 (4965).CrossRefGoogle Scholar
  60. 60.
    D. Lenaz and V. Lughi, Physics and Chemistry of Minerals 40, 2013 (491).CrossRefGoogle Scholar
  61. 61.
    K. R. Elder, K. Thornton and J. J. Hoyt, Philosophical Magazine 91, 2011 (151).CrossRefGoogle Scholar
  62. 62.
    D. E. J. Armstrong, A. S. M. A. Haseeb, S. G. Roberts, A. J. Wilkinson and K. Bade, Thin Solid Films 520, 2012 (4369).CrossRefGoogle Scholar
  63. 63.
    D. Jauffres, X. Liu and C. L. Martin, Procedia Engineering 10, 2011 (2719).CrossRefGoogle Scholar
  64. 64.
    M. G. Mueller, V. Pejchal, G. Žagar, A. Singh and M. Cantoni, Acta Materialia 86, 2015 (385).CrossRefGoogle Scholar
  65. 65.
    D. Frazer, M. D. Abad, D. Krumwiede, C. Back, K. Hesham and P. Hosemann, Composites: Part A 70, 2015 (93).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • M. D. Abad
    • 1
  • S. Parker
    • 1
    Email author
  • D. Frazer
    • 1
  • M. Rebelo de Figueiredo
    • 1
  • A. Lupinacci
    • 1
  • K. Kikuchi
    • 2
  • P. Hosemann
    • 1
  1. 1.Department of Nuclear EngineeringUniversity of California, BerkeleyBerkeleyUSA
  2. 2.Frontier Research Center for Applied Nuclear ScienceIbaraki UniversityMitoJapan

Personalised recommendations