Oxidation of Metals

, Volume 82, Issue 5–6, pp 437–456 | Cite as

The Onset of Potassium Chloride Induced High Temperature Corrosion: A Novel Experimental Approach

  • Jingxin Sui
  • Juho Lehmusto
  • Mikael Bergelin
  • Mikko Hupa
Original Paper

The present study investigates the early stages of the oxide layer degradation process of Sanicro 28 (Fe31Cr27Ni) stainless steel when exposed to KCl at 450 and 535 °C. A novel combinatory technique was developed and utilized, where CA was employed as a qualitative method to follow the varying stages of the onset of the corrosion reaction. XPS was then used to identify the elemental distribution and depth profile within the oxide layer at each identified reaction stage, and the resulting change in surface morphology and the progress of the corrosion front was studied by SEM-EDXA. Additionally, the main mechanism behind the spreading of the reaction front was identified using a novel test approach. The corrosion reaction could be separated into several overlapping stages, with the process being initiated by the alternation of the oxide layer resulting in the loss of passivity, the formation of chromate within the oxide layer and finally the oxidation of the chromium and iron from underlying material.

Keywords

KCl Sanicro 28 Chronoamperometry High-temperature corrosion K2CrO4 

Notes

Acknowledgments

The author would like to thank Mr. Linus Silvander for operating the SEM-EDXA apparatus and Mr. Jyrki Juhanoja from Top Analytica Oy Ab for operating the XPS apparatus. This work has been carried out within FUSEC (2011–2014) as part of the activities of the Åbo Akademi Process Chemistry Centre. Other research partners are VTT, Lappeenranta University of Technology, Aalto University and Tampere University of Technology. Support from the National Technology Agency of Finland (Tekes), Andritz Oy, Metso Power Oy, Foster Wheeler Energia Oy, UPM-Kymmene Oyj, Clyde Bergemann GmbH, International Paper Inc. and Top Analytica Oy Ab is gratefully acknowledged.

References

  1. 1.
    S. Van Loo and J. Koppejan, The Handbook Of Biomass Combustion and Co-Firing, (Earthscan, London, 2008).Google Scholar
  2. 2.
    H. Nielsen, F. Frandsen, K. Dam-Johansen and L. Baxter, Progress in Energy and Combustion Science 26, (283) 2000 .CrossRefGoogle Scholar
  3. 3.
    H. P. Michelsen, F. Frandsen, K. Dam-Johansen and O. H. Larsen, Fuel Processing Technology 54, (95–108) 1998.CrossRefGoogle Scholar
  4. 4.
    T. Jonsson, N. Folkeson, J. E. Svensson, L. G. Johansson and M. Halvarsson, Corrosion Science 53, (2233–2246) 2011.CrossRefGoogle Scholar
  5. 5.
    J. Lehmusto, P. Yrjas, B. J. Skrifvars and M. Hupa, Fuel Processing Technology 104, (253–264) 2012.CrossRefGoogle Scholar
  6. 6.
    C. Pettersson, J. Pettersson, H. Asteman, J. E. Svensson and L. G. Johansson, Corrosion Science 48, (6), (1368–1378) 2006.CrossRefGoogle Scholar
  7. 7.
    Y. S. Li, M. Sanchez-Pasten and M. Spiegel, Materials Science Forum 461, (1047–1054) 2004.CrossRefGoogle Scholar
  8. 8.
    C.-O. A. Olsson and D. Landolt, Electrochimica acta 48, (9), (1093–1104) 2003.CrossRefGoogle Scholar
  9. 9.
    Y. S. Li, Y. Niu and W. T. Wu, Materials Science and Engineering: A 345, (1), (64–71) 2003.CrossRefGoogle Scholar
  10. 10.
    Y. Lee and M. McNallan, Metallurgical Transactions A 18, (1099–1107) 1987.CrossRefGoogle Scholar
  11. 11.
    M. Spiegel, Materials and Corrosion 50, (373–393) 1999.CrossRefGoogle Scholar
  12. 12.
    J. Pettersson, C. Pettersson, H. Asteman, J. E. Svensson and L. G. Johansson, Materials Science Forum 461, (965–972) 2004.CrossRefGoogle Scholar
  13. 13.
    Y. Shinata and Y. Nishi, Oxidation of metals 26, (201–212) 1986.CrossRefGoogle Scholar
  14. 14.
    A. Ruh and M. Spiegel, Corrosion science 48, (679–695) 2006.CrossRefGoogle Scholar
  15. 15.
    J. Lehmusto, D. Lindberg, P. Yrjas, B. J. Skrifvars and M. Hupa, Corrosion Science 59, (55–62) 2012.CrossRefGoogle Scholar
  16. 16.
    J. Pettersson, H. Asteman, J. E. Svensson and L. G. Johansson, Oxidation of Metals 64, (1–2), (23–41) 2005.CrossRefGoogle Scholar
  17. 17.
    B. J. Skrifvars, M. Westén-Karlsson, M. Hupa and K. Salmenoja, Corrosion Science 52, (1011–1019) 2010.CrossRefGoogle Scholar
  18. 18.
    C. Zeng, W. Wang and W. Wu, Corrosion science 43, (787–801) 2001.CrossRefGoogle Scholar
  19. 19.
    C.-L. Zeng and J. Li, Electrochimica acta 50, (5533–5538) 2005.CrossRefGoogle Scholar
  20. 20.
    C. Brett, Corrosion science 33, (203–210) 1992.CrossRefGoogle Scholar
  21. 21.
    K. Hladky and J. Dawson, Corrosion Science 21, (317–322) 1981.CrossRefGoogle Scholar
  22. 22.
    F. Mansfeld and H. Xiao, Journal of the Electrochemical Society 140, (2205–2209) 1993.CrossRefGoogle Scholar
  23. 23.
    D. R. Baer, M. H. Engelhard, A. S. Lea, et al., Journal of Vacuum Science & Technology A 28, (5), (1060–1072) 2010.CrossRefGoogle Scholar
  24. 24.
    A. Hermas, Corrosion Science 50, (2498–2505) 2008.CrossRefGoogle Scholar
  25. 25.
    C. Proff, T. Jonsson, C. Pettersson, J.-E. Svensson, L.-G. Johansson and M. Halvarsson, Materials at High Temperatures 26, (113–125) 2009.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jingxin Sui
    • 1
  • Juho Lehmusto
    • 1
  • Mikael Bergelin
    • 1
  • Mikko Hupa
    • 1
  1. 1.Åbo Akademi UniversityTurkuFinland

Personalised recommendations