Advertisement

Oxidation of Metals

, Volume 82, Issue 1–2, pp 123–143 | Cite as

Mechanisms of Oxide Scale Formation on Ferritic Interconnect Steel in Simulated Low and High pO2 Service Environments of Solid Oxide Fuel Cells

  • L. NiewolakEmail author
  • D. J. Young
  • H. Hattendorf
  • L. Singheiser
  • W. J. Quadakkers
Original Paper

Abstract

The Laves phase strengthened ferritic steel Crofer 22 H has recently been proposed as construction material for interconnects in solid oxide fuel cells (SOFCs). In the present study, the oxidation kinetics of Crofer 22 H at 800 °C was compared with that of a Mn-free batch during exposure in air and Ar–H2–H2O, the latter simulating the anode gas of a SOFC. Main emphasis was put on studying the oxidation mechanisms of Crofer 22 H during the early stages of isothermal reaction as well as during long-term discontinuous exposure. Differences in oxidation mechanisms in air and simulated anode gas (SAG) were defined. Oxidation rates for Crofer 22 H in air were found to be initially slower than in SAG, but the opposite effect was observed after longer exposure times. This effect of atmosphere composition on the oxidation rate is shown to be governed by the time dependent extent to which the inner chromia scale layer is covered by an outer Cr/Mn spinel layer. In both test gases the minor addition of silicon to Crofer 22 H resulted in internal silica formation during the very early stages of oxidation; this effect vanished after longer exposure times. Incorporation of titanium in the scale differed for the two test atmospheres because the oxygen partial pressure affects titanium solubility in chromia and especially the spinel phase.

Keywords

SOFC Interconnect Ferritic steel Chromia Spinel Laves phase 

Notes

Acknowledgments

The authors are grateful to Mr Cosler and Mrs Kick for their assistance in carrying out the oxidation experiments, Dr. Wessel and Dr. Grüner for SEM analyses, Mr. Ziegner for XRD studies and Mr. Borzikov for SNMS analyses. Part of the investigations was carried out in the frame of the ZEUS III project funded by the German Ministry of Economics (BMWi) under contract nr. FKZ0327766A-D

References

  1. 1.
    W. R. Groove, Philosophical Magazine 21, 1842 (417).Google Scholar
  2. 2.
    E. Baur and H. Preis, Zeitschrift für Elektrochemie 43, 1937 (727).Google Scholar
  3. 3.
    F. Tietz, H.-P. Buchkremer and D. Stöver, Solid State Ionics 152–153, 2002 (373).CrossRefGoogle Scholar
  4. 4.
    W. J. Quadakkers, H. Greiner, and W. Köck, in: Proceedings 1st European Solid Oxide Fuel Cell Forum, ed. U. Bossel, Vol. 2, (Baden, Switzerland, 1994), pp. 525–541.Google Scholar
  5. 5.
    M. Palcut, L. Mikkelsen, K. Neufeld, M. Chen, R. Knibbe and P. V. Hendriksen, Corrosion Science 52, 2010 (3309).CrossRefGoogle Scholar
  6. 6.
    L. Niewolak, E. Wessel, L. Singheiser and W. J. Quadakkers, Journal of Power Sources 195, 2010 (7600).CrossRefGoogle Scholar
  7. 7.
    J. P. P. Huijsmans, F. P. F. van Berkel and G. M. Christie, Journal of Power Sources 71, 1998 (107).CrossRefGoogle Scholar
  8. 8.
    B. G. Rietveld, F. P. Van Berkel, Y. Zhang-Steenwinkel, E. Bouyer, J. Irvine, M. Menon, L. Niewolak, S. Gross, A. Heel, P. Holtappels and S. Modena, ECS Transactions 25, 2009 (29).CrossRefGoogle Scholar
  9. 9.
    L. Niewolak, E. Wessel, T. Hüttel, C. Asensio-Jimenez, L. Singheiser and W. J. Quadakkers, Journal of The Electrochemical Society 159, (11), 2012 (F725).CrossRefGoogle Scholar
  10. 10.
    J. Divisek, L. G. J. de Haart, P. Holtappels, T. Lennartz, W. Malléner, U. Stimming and K. Wippermann, Journal of Power Sources 49, 1994 (257).CrossRefGoogle Scholar
  11. 11.
    P. Kofstad and R. Bredesen, Solid State Ionics 52, 1992 (69).CrossRefGoogle Scholar
  12. 12.
    W. J. Quadakkers, H. Greiner, and W. Köck, in: Proceedings 1st European Solid Oxide Fuel Cell Forum, ed. U. Bossel, Vol. 525, (Baden, Switzerland, 1994).Google Scholar
  13. 13.
    W. J. Quadakkers, J. Piron-Abellan, V. Shemet and L. Singheiser, Materials at High Temperatures 20, 2003 (115).Google Scholar
  14. 14.
    J. Piron-Abellan, V. Shemet, F. Tietz, L. Singheiser, W. J. Quadakkers and SOFC-VII, Proceedings The Electrochemical Society 2001–16, 2001 (811–819).Google Scholar
  15. 15.
    Z. Yang, K. Scott, W. Dean, M. Paxton and J. W. Stevenson, Journal of The Electrochemical Society 150, 2003 (1188).CrossRefGoogle Scholar
  16. 16.
    J. W. Fergus, Materials Science and Engineering, A 397, 2005 (271).CrossRefGoogle Scholar
  17. 17.
    S. Fontana, R. Amendola, S. Chevalier, P. Piccardo, G. Caboche, M. Viviani, R. Molins and M. Sennour, Journal of Power Sources 171, 2007 (652).CrossRefGoogle Scholar
  18. 18.
    W. J. Quadakkers, H. Greiner, W. Köck, H. P. Buchkremer, K. Hilpert, and D. Stöver, in: Proceedings of 2nd European Solid Oxide Fuel Cell Forum, eds. B. Thorstensen, Vol. 297 (1996).Google Scholar
  19. 19.
    L. Blum, L. G. J. (Bert) de Haart, J. Malzbender, N. H. Menzler, J. Remmel, and R. Steinberger-Wilckens, Journal of Power Sources 241, 477 (2013).Google Scholar
  20. 20.
    A. Venskutonis, G. Kunschert, E. Mueller and H.-M. Hoehle, ECS Transactions 7, 2007 (2109).CrossRefGoogle Scholar
  21. 21.
    P. Huczkowski, N. Christiansen, V. Shemet, L. Singheiser, and W. J. Quadakkers, in: Proceedings of 6th European Solid Oxide Fuel Cell Forum, Vol. 3, 1594 (Lucerne, 2004).Google Scholar
  22. 22.
    J. Froitzheim, G. H. Meier, L. Niewolak, P. J. Ennis, H. Hattendorf, L. Singheiser and W. J. Quadakkers, Journal of Power Sources 178, 2008 (163).CrossRefGoogle Scholar
  23. 23.
    B. Kuhn, C. Asensio Jimenez, L. Niewolak, T. Hüttel, T. Beck, H. Hattendorf, L. Singheiser and W. J. Quadakkers, Materials Science and Engineering A 528, 2011 (5888).CrossRefGoogle Scholar
  24. 24.
    H. Hattendorf, L.Niewolak, and W. J. Quadakkers, Crofer 22 H: effizienter Werkstoff für die Brennstoffzelle von morgen, Jahresmagazin Ingenierwissenschaften—Im Fokus: Werkstofftechnologien, ISSN 1618-8357, March, 56 (2012).Google Scholar
  25. 25.
    L. Singheiser, P. Huczkowski, T. Markus, and W. J. Quadakkers High Temperature Corrosion Issues for Metallic Materials in Solid Oxide Fuel Cells, in: Shreir’s Corrosion, Vol. 1, (2010), p. 482.Google Scholar
  26. 26.
    P. Huczkowski, S. Ertl, J. Piron-Abellan, N. Christiansen, T. Höfler, V. Shemet, L. Singheiser and W. J. Quadakkers, Materials at High Temperatures 22, 2005 (79).CrossRefGoogle Scholar
  27. 27.
    M. Palcut, L. Mikkelsen, K. Neufeld, M. Chen, R. Knibbe and P. V. Hendriksen, Corrosion Science 52, 2010 (3309).CrossRefGoogle Scholar
  28. 28.
    M. Linder, T. Hocker, L. Holzer, K. A. Friedrich, B. Iwanschitz and A. Mai, Journal of Power Sources 243, 2013 (508).CrossRefGoogle Scholar
  29. 29.
    J. E. Hammer, S. J. Laney, R. W. Jackson, K. Coyne, F. S. Pettit and G. H. Meier, Oxidation of Metals 67, (1), 2007 (1).CrossRefGoogle Scholar
  30. 30.
    S. Guillou, C. Desgranges and S. Chevalier, Oxidation of Metals 79, 2013 (507).CrossRefGoogle Scholar
  31. 31.
    S. Fontana, S. Chevalier and G. Caboche, Journal of Power Sources 193, 2009 (136).CrossRefGoogle Scholar
  32. 32.
    J. Zurek, D. J. Young, E. Essuman, M. Hänsel, H. J. Penkalla, L. Niewolak and W. J. Quadakkers, Material Science and Engineering, A 477, 2007 (259).CrossRefGoogle Scholar
  33. 33.
    J. Froitzheim, Schriften des Forschungszentrums Jülich, ISBN 3893365400, Vol. 16, (2008).Google Scholar
  34. 34.
    C. Wagner, Zeitschrift für Elektrochemie 65, 1961 (581).Google Scholar
  35. 35.
    W. J. Quadakkers, J. F. Norton, H. J. Penkalla U. Breuer, A. Gil, T. Rieck, and M. Hänsel, in: Proceedings of 3rd International conference on “Microscopy of Oxidation”, Vol. 221, (Cambridge, 1996).Google Scholar
  36. 36.
    M. Hänsel, W. J. Quadakkers, L. Singheiser, and H. Nickel, Report Forschungszentrum Jül-3583, ISSN 0944-2952 (1998).Google Scholar
  37. 37.
    G. Hultquist, B. Tveten and E. Hörnlund, Oxidation of Metals 54, (1/2), 2000 (1).CrossRefGoogle Scholar
  38. 38.
    S. Henry, J. Mougin, Y. Wouters, J. P. Petit and A. Galerie, Materials at High temperatures 17, (2), 2000 (231).CrossRefGoogle Scholar
  39. 39.
    M. Hänsel, W. J. Quadakkers and D. J. Young, Oxidation of Metals 59, (3/4), 2003 (285).CrossRefGoogle Scholar
  40. 40.
    E. Essuman, G. H. Meier, J. Zurek, M. Hänsel, T. Norby, L. Singheiser and W. J. Quadakkers, Corrosion Science 50, 2008 (1753).CrossRefGoogle Scholar
  41. 41.
    E. Essuman, G. H. Meier, J. Zurek, M. Hänsel, L. Singheiser, T. Norby and W. J. Quadakkers, Journal of Materials Science 43, 2008 (5591).CrossRefGoogle Scholar
  42. 42.
    M. Michalik, M. Hänsel, and W. J. Quadakkers, Report Forschungszentrum Jülich, ISBN 978-3-89336-486-2, Vol. 67 (2007).Google Scholar
  43. 43.
    W. J. Quadakkers, and J. Zurek, in: Shreir’s Corrosion, ed. J. A. Richardson et al., Vol. 1, (Amsterdam, Elsevier, 2010), pp. 407–456.Google Scholar
  44. 44.
    D. J. Young, in P. Steinmetz (eds.) High Temperature Corrosion and Protection of Materials, 1189, 595–598 (2008).Google Scholar
  45. 45.
    D. J. Young, International Journal Hydrogen Energy 32, 2007 (3763).CrossRefGoogle Scholar
  46. 46.
    X. G. Zheng and D. J. Young, Corrosion Science 36, 1994 (1999).CrossRefGoogle Scholar
  47. 47.
    X. G. Zheng and D. J. Young, Oxidation of Metals 42, 1994 (163).CrossRefGoogle Scholar
  48. 48.
    M. Michalik, S. L. Tobing, M. Hänsel, V. Shemet, W. J. Quadakkers and D. J. Young, Materials and Corrosion 65, (3), 2014 (260).CrossRefGoogle Scholar
  49. 49.
    W. J. Quadakkers, T. Olszewski, J. Piron-Abellan, V. Shemet and L. Singheiser, Materials Science Forum 696, 2011 (194).CrossRefGoogle Scholar
  50. 50.
    T. Gheno, D. Monceau, J. Q. Zhang and D. J. Young, Corrosion Science 53, (9), 2011 (2767).CrossRefGoogle Scholar
  51. 51.
    J. Pirón-Abellán, T. Olszewski, H. J. Penkalla, G. H. Meier, L. Singheiser and W. J. Quadakkers, Materials at High Temperatures 26, 2009 (63).CrossRefGoogle Scholar
  52. 52.
    T. D. Nguyen, J. Zhang and D. J. Young, Scripta Materialia 69, 2013 (9).CrossRefGoogle Scholar
  53. 53.
    I. Wolf and H. J. Grabke, Solid State Communications 54, 1985 (5).CrossRefGoogle Scholar
  54. 54.
    A. Naoumidis, H. A. Schulze, W. Jungen and P. Lersch, Journal of European Ceramic Society 7, 1991 (55).CrossRefGoogle Scholar
  55. 55.
    P. Huczkowski, S. T. Ertl, N. Christiansen, T. Höfler, E. Wessel, V. Shemet, L. Singheiser, and W. J. Quadakkers, in: Fuel Cell Seminar “Progress, Challenges and Markets”: Abstracts, Vol. 57, (Palm Springs, California, USA, November 14–18, 2005).Google Scholar
  56. 56.
    P. J. Ennis, and W. J. Quadakkers, High Temperature Alloys: Their Exploitable Potential, ed. J. Marriott, M. Merz, J. Nihoul, J. Ward, J. R. C. Petten, NL, Vol. 465, 15–17th Oct 1985, (Elsevier Applied Science, London, 1987).Google Scholar
  57. 57.
    W. J. Quadakkers, Materials Science and Engineering 87, 1987 (107).CrossRefGoogle Scholar
  58. 58.
    S. Canovic, J. Froitzheim, R. Sachitanand, M. Nikumaa, M. Halvarsson, L. G. Johansson and J.-E. Svensson, Surface and Coatings Technology 215, 2013 (62).CrossRefGoogle Scholar
  59. 59.
    S. Cruchley, H. E. Evans, M. P. Taylor, M. C. Hardy and S. Stekovic, Corrosion Science 75, 2013 (58).CrossRefGoogle Scholar
  60. 60.
    A. Jalowicka, W. Nowak, D. Naumenko, L. Singheiser and W. J. Quadakkers, Materials and Corrosion 65, (2), 2014 (178).CrossRefGoogle Scholar
  61. 61.
    T. Malkow, W. J. Quadakkers, L. Singheiser, and H. Nickel, Report Forschungszentrum Jülich, Jül-3589, ISSN 0944-2952 (1998).Google Scholar
  62. 62.
    H. E. Evans, D. A. Hilton, R. A. Holm and S. J. Webster, Influence of silicon additions on the oxidation resistance of a stainless steel. Oxidation of Metals 19, 1983 (1).CrossRefGoogle Scholar
  63. 63.
    W. J. Quadakkers, L. Niewolak, and P. J. Ennis, Creep resistant ferritic steel, Patent DE 10 2006 007 598 A1, Filing date 18. 2. 2006.Google Scholar
  64. 64.
    C. Asensio, A. Chyrkin, L. Niewolak, V. Konoval, H. Hattendorf, B. Kuhn, L. Singheiser and W. J. Quadakkers, Electrochemical and Solid-State Letters 14, (8), 2011 (17–20).CrossRefGoogle Scholar
  65. 65.
    A. Chyrkin, P. Huczkowski, V. Shemet, L. Singheiser and W. J. Quadakkers, Oxidation of Metals 75, 2011 (143).CrossRefGoogle Scholar
  66. 66.
    L. Garcıa Fresnillo, A. Chyrkin, T. Hüttel, C. Böhme, J. Barnikel, D. Grüner, F. Schmitz and W. J. Quadakkers, Materials and Corrosion 63, 2012 (878).Google Scholar
  67. 67.
    C. Asensio-Jimenez, PhD thesis, RWTH, (Aachen, Germany, 2013).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • L. Niewolak
    • 1
    Email author
  • D. J. Young
    • 2
  • H. Hattendorf
    • 3
  • L. Singheiser
    • 1
  • W. J. Quadakkers
    • 1
  1. 1.Institute of Energy Research (IEK-2)Forschungszentrum JülichJülichGermany
  2. 2.University of New South WalesSydneyAustralia
  3. 3.OUTOKUMPU/VDMWerdohlGermany

Personalised recommendations