Advertisement

Oxidation of Metals

, Volume 81, Issue 5–6, pp 617–630 | Cite as

High-Temperature Corrosion of Aluminized and Chromized Fe–25.8 %Cr–19.5 %Ni Alloys in N2/H2S/H2O-Mixed Gases

  • Jae Chun Lee
  • Min Jung Kim
  • Dong Bok LeeEmail author
Original Paper

Abstract

Alloys of Fe–25.8 %Cr–19.5 %Ni (SUS310 stainless steel) were either chromized or aluminized via pack cementation, and corroded at 800 °C for 100 h in 1 atm of (0.9448 atm of N2 + 0.031 atm of H2O + 0.0242 atm of H2S)-mixed gases. The chromized layer consisted primarily of Cr1.36Fe0.52 and some Cr23C6. Its corrosion resulted in the formation of Cr2S3 and some FeS and Fe5Ni4S8. The aluminized coating consisted primarily of FeAl. Its corrosion resulted in the formation of α-Al2O3, Al2S3, and Cr2S3. Aluminizing was more effective than chromizing in increasing the corrosion resistance of the substrate, due mainly to the formation of α-Al2O3.

Keywords

Aluminizing Chromizing Corrosion Sulfidation Water vapor H2S corrosion 

Notes

Acknowledgment

This paper was supported by Samsung Research Fund, Sungkyunkwan University, 2012.

References

  1. 1.
    D. Young, High Temperature Oxidation and Corrosion of Metals, (Elsevier, Cambridge, 2008).Google Scholar
  2. 2.
    J. Shen, L. Zhou and T. Li, Oxidation of Metals 48, 347 (1997).CrossRefGoogle Scholar
  3. 3.
    R. John, R. A. Cottis, M. J. Graham, R. Lindsay, S. B. Lyon, J. A. Richardson, J. D. Scantlebury and F. H. Stott, Shreir’s Corrosion, Vol. 1, 4th edn., (Elsevier, Oxford, 2010).Google Scholar
  4. 4.
    A. S. Khanna, Introduction to High Temperature Oxidation and Corrosion, (ASM Int, Materials Park, 2002), p. 135.Google Scholar
  5. 5.
    N. Birks, G. H. Meier and F. S. Pettit, Introduction to High Temperature Oxidation of Metals, 2nd edn., (Cambridge Univ, Cambridge, 2006).CrossRefGoogle Scholar
  6. 6.
    S. Mrowec and M. Wedrychowska, Oxidation of Metals 13, 481 (1979).CrossRefGoogle Scholar
  7. 7.
    M. Danielewski, S. Mrowec and A. Stołosa, Oxidation of Metals 17, 77 (1982).CrossRefGoogle Scholar
  8. 8.
    S. Mrowec and K. Przybylski, Oxidation of Metals 23, 107 (1985).CrossRefGoogle Scholar
  9. 9.
    R. Sivakumar and E. J. Rao, Oxidation of Metals 17, 391 (1982).CrossRefGoogle Scholar
  10. 10.
    S. W. Green and F. H. Stott, Corrosion Science 33, 345 (1992).CrossRefGoogle Scholar
  11. 11.
    W. T. Tsai and K. E. Huang, Thin Solid Films 366, 164 (2000).CrossRefGoogle Scholar
  12. 12.
    S. Sharafi and M. R. Farhang, Surface and Coatings Technology 200, 5048 (2006).CrossRefGoogle Scholar
  13. 13.
    Z. E. Majid and M. Lambertin, Materials Science and Engineering 87, 205 (1987).CrossRefGoogle Scholar
  14. 14.
    Z. Zhan, Z. Liu, J. Liu, L. Li, Z. Li and P. Liao, Applied Surface Science 256, 3874 (2010).CrossRefGoogle Scholar
  15. 15.
    S. W. Green and F. H. Stott, Oxidation of Metals 36, 239 (1991).CrossRefGoogle Scholar
  16. 16.
    N. J. Simms, J. F. Norton and T. M. Lowe, Journal de Physique IV 3, 807 (1993).CrossRefGoogle Scholar
  17. 17.
    D. Bell, B. Towler and M. Fan, Coal Gasification and Its Applications, (Elsevier, Amsterdam, 2010), p. 137.Google Scholar
  18. 18.
    S. G. Kim, Y. J. Park, K. H. Yeo and J. H. Lee, Korean Journal of Metals and Materials 50, 809 (2012).CrossRefGoogle Scholar
  19. 19.
    G. H. Meier, C. Cheng, R. A. Perkins and W. Bakker, Surface and Coatings Technology 39, 53 (1989).CrossRefGoogle Scholar
  20. 20.
    C. T. Liu and J. D. Wu, Surface and Coatings Technology 43, 493 (1990).CrossRefGoogle Scholar
  21. 21.
    J. W. Lee and J. G. Duh, Surface and Coatings Technology 177, 525 (2004).CrossRefGoogle Scholar
  22. 22.
    D. Y. Chang, S. Y. Lee and S. S. Kang, Surface and Coatings Technology 116, 391 (1999).CrossRefGoogle Scholar
  23. 23.
    N. Lin, F. Xie, T. Zhong, X. Wu and W. Tian, Journal of Rare Earths 28, 301 (2010).CrossRefGoogle Scholar
  24. 24.
    N. Lin, F. Xie, H. Yang, W. Tian, H. Wang and B. Tang, Applied Surface Science 258, 4960 (2012).CrossRefGoogle Scholar
  25. 25.
    K. Bouché, F. Barbier and A. Coulet, Materials Science and Engineering A249, 167 (1998).CrossRefGoogle Scholar
  26. 26.
    W. J. Cheng and C. J. Wang, Surface and Coatings Technology 204, 824 (2009).CrossRefGoogle Scholar
  27. 27.
    M. R. Bateni, S. Shaw, P. Wei and A. Petric, Materials and Manufacturing Processes 24, 626 (2009).CrossRefGoogle Scholar
  28. 28.
    H. Ahmadi and D. Y. Li, Wear 255, 933 (2003).CrossRefGoogle Scholar
  29. 29.
    M. Zandrahimi, J. Vatandoost and H. Ebrahimifar, Oxidation of Metals 76, 347 (2011).CrossRefGoogle Scholar
  30. 30.
    P. Kofstad, Solid State Ionics 12, 101 (1984).CrossRefGoogle Scholar
  31. 31.
    I. Barin, Thermochemical Data of Pure Substances, (VCH, Weinhein, 1989).Google Scholar
  32. 32.
    E. F. Sinyakova and V. I. Kosyakov, Inorganic Materials 37, 1130 (2001).CrossRefGoogle Scholar
  33. 33.
    Y. Chen, D. J. Young and S. Blairs, Oxidation of Metals 40, 433 (1993).CrossRefGoogle Scholar
  34. 34.
    H. Habazaki, H. Mitsui, K. Ito, K. Asami, K. Hashimoto and S. Mrowec, Corrosion Science 44, 285 (2002).CrossRefGoogle Scholar
  35. 35.
    M. F. Chen and D. L. Douglass, Oxidation of Metals 33, 103 (1990).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringMyongji UniversityYonginSouth Korea
  2. 2.School of Advanced Materials Science and EngineeringSungkyunkwan UniversitySuwonSouth Korea

Personalised recommendations