Oxidation of Metals

, Volume 80, Issue 3–4, pp 423–436 | Cite as

Isothermal Oxidation Behaviour of Nanocrystalline RuAl Intermetallic Thin Films

  • M. A. Guitar
  • F. Mücklich
Original Paper


It has been demonstrated that intermetallic thin films usually show different oxidation rates compared to those of bulk materials. Within the intermetallic phases, RuAl thin films have not been thoroughly investigated. Thereby, new studies of these systems are needed. Single-phase RuAl was found to be a promising candidate for protective coating material in applications that demand oxidation resistance. An important advantage of this system over other B2-aluminides arises on the coefficient of thermal expansion (CTE), which is substantially lower than that of FeAl, CoAl and NiAl, and it is closer to that of the α-Al2O3, thus increasing the adherence to the alumina protective layer, by decreasing the CTE mismatch between each other. In the present work, the isothermal oxidation behaviour of single-phase RuAl thin films deposited onto austenitic stainless steel substrates was studied in ambient air at 750 and 900 °C for short times (up to 60 min.). Scanning transmission electron microscopy and X-ray diffraction were performed for the subsequent analysis of the oxide scale. A protective α-Al2O3 scale was formed and in comparison to other aluminides, no evidence of the formation of transient alumina was found even at temperatures as low as 750 °C, being this fact an advantage over the most studied aluminides. The presence of particles at the metal/oxide interface is an indication that the oxide growth is dominated by the outward diffusion of Al cations. Moreover, this growth is described by a parabolic law showing an oxidation rate k x  = 1.3 × 10−13 cm2/s at 900 °C and the corresponding oxidation activation energy is 116.4 ± 7.5 kJ/mol. The sufficient Al flux to the oxidation front, in combination with the narrow inter-nuclei spacing lead to a faster formation of continuous α-Al2O3 compared to bulk RuAl, as a consequence of the high density of grain boundaries.


B2-RuAl Aluminides Oxidation Thin films 



This study was funded within a research project MU 959/24-1 of the Deutsche Forschungsgemeinschaft (DFG). The authors would like to thank the EFRE Funds of the European Commission for support of activities within the AME-Lab project. The authors are also grateful to Prof. Seidel, from the Department of Mechatronics, Saarland University, for the use of the magnetron sputtering device; and to Dr. F. Soldera, Dr. C. Gachot, Dipl.-Ing. N. Souza, Dipl.-Ing. C. Pauly and Dipl.-Ing. Sebastián Suarez for the usefully comments and discussion. A.Guitar is grateful to the German Academic Exchange Service (DAAD) for the financial support.


  1. 1.
    F. Mücklich, N. Ilić, and K. Woll, Intermetallics 16, 593 (2008).CrossRefGoogle Scholar
  2. 2.
    F. Soldera, N. Ilic, S. Brännström, I. Barrientos, H. Gobran, and F. Mücklich, Oxidation of Metals 59, 529 (2003).CrossRefGoogle Scholar
  3. 3.
    B. Tryon, T. M. Pollock, M. F. X. Gigliotti, and K. Hemker, Scripta Materialia 50, 9 (2003).Google Scholar
  4. 4.
    F. Soldera, N. Ilić, N. Manent Conesa, I. Barrientos, and F. Mücklich, Intermetallics 13, 101 (2005).CrossRefGoogle Scholar
  5. 5.
    N. Ilić, F. Soldera, and F. Mücklich, Intermetallics 13, 444 (2005).CrossRefGoogle Scholar
  6. 6.
    P. J. Bellina, A. Catanoiu, F. M. Morales, and M. Rühle, Journal of Material Research 2, 276 (2006).CrossRefGoogle Scholar
  7. 7.
    F. Cao, T. K. Nandy, D. Stobbe, and T. M. Pollock, Intermetallics 15, 34 (2007).CrossRefGoogle Scholar
  8. 8.
    F. Cao and T. M. Pollock, Acta Materialia 55, 2715 (2007).CrossRefGoogle Scholar
  9. 9.
    N. Zotov, K. Woll, and F. Mücklich, Intermetallics 18, 1507 (2010).CrossRefGoogle Scholar
  10. 10.
    K. Woll, R. Chinnam, and F. Mücklich. MRS Proceedings (2008), p. 1128.Google Scholar
  11. 11.
    D. Zhong, G. G. Mustoe, J. Moore, and J. Disam, Surface and Coatings Technology 146–147, 312 (2001).CrossRefGoogle Scholar
  12. 12.
    A. Y. Yi and A. Jain, Journal of the American Ceramic Society 88, 579 (2005).CrossRefGoogle Scholar
  13. 13.
    M. A. Guitar, K. Woll, E. Ramos-Moore, and F. Mücklich, Thin Solid Films 527, 1 (2013).CrossRefGoogle Scholar
  14. 14.
    A. Huntz, Journal of Materials Science Letters 8, 1981 (1999).CrossRefGoogle Scholar
  15. 15.
    H. Hindam and D. P. Whittle, Oxidation of Metals 18, 245 (1982).CrossRefGoogle Scholar
  16. 16.
    G. H. Meier, Materials and Corrosion 47, 595 (1996).CrossRefGoogle Scholar
  17. 17.
    R. Prescott and M. J. Graham, Oxidation of Metals 38, 73 (1992).CrossRefGoogle Scholar
  18. 18.
    H. J. Grabke, Materials Science Forum 251–254, 149 (1997).CrossRefGoogle Scholar
  19. 19.
    C. Choux, A. J. Kulińska, and S. Chevalier. Intermetallics 16, 1 (2008).Google Scholar
  20. 20.
    R. Prescott and M. J. Graham, Oxidation of Metals 38, 233 (1992).CrossRefGoogle Scholar
  21. 21.
    H. J. Grabke, Intermetallics 7, 1153 (1999).CrossRefGoogle Scholar
  22. 22.
    D. Barber, Philosophical Magazine 10, 75 (1964).CrossRefGoogle Scholar
  23. 23.
    F. Mücklich and N. Ilić, Intermetallics 13, 5 (2005).CrossRefGoogle Scholar
  24. 24.
    ASM Handbook, Vol. 3. Alloy Phase Diagrams (1992).Google Scholar
  25. 25.
    J. Doychak and M. Rühle, Oxidation of Metals 31, 431 (1989).CrossRefGoogle Scholar
  26. 26.
    G. Cao, L. Geng, Z. Zheng, and M. Naka, Intermetallics 15, 1672 (2007).CrossRefGoogle Scholar
  27. 27.
    F. Wang, Oxidation of Metals 48, 215 (1997).CrossRefGoogle Scholar
  28. 28.
    J. G. Goedjen and D. A. Shores, Oxidation of Metals 37, 125 (1992).CrossRefGoogle Scholar
  29. 29.
    V. Trindade, U. Krupp, and B. Hanjari, Materials Research 8, 371 (2005).CrossRefGoogle Scholar
  30. 30.
    H. Lou, F. Wang, S. Zhu, B. Xia, and L. Zhang. Surface and Coatings Technology 63, 105 (1994). Google Scholar
  31. 31.
    Z. Liu, W. E. I. Gao, K. L. Dahm, and F. Wang, Acta Materialia 46, 1691 (1998).CrossRefGoogle Scholar
  32. 32.
    S. Choi, H. Cho, and D. Lee, Oxidation of Metals 46, 109 (1996).CrossRefGoogle Scholar
  33. 33.
    D. R. Clarke, Acta Materialia 51, 1393 (2003).CrossRefGoogle Scholar
  34. 34.
    M. Schütze, Protective Oxide Scales and Their Breakdown. ISBN 0-471-95904 9 (1991).Google Scholar
  35. 35.
    G. C. Rybicki and J. L. Smialek, Oxidation of Metals 31, 275 (1989).CrossRefGoogle Scholar
  36. 36.
    A. Kumar, M. Nasrallah, and D. Douglass, Oxidation of Metals 8, 227 (1974).CrossRefGoogle Scholar
  37. 37.
    K. Reddy, J. Smialek, and A. Cooper, Oxidation of Metals 17, 429 (1982).CrossRefGoogle Scholar
  38. 38.
    S. Choi, H. Cho, Y. Kim, D. Lee. Oxidation of Metals 46, 51 (1996).Google Scholar
  39. 39.
    J. Smialek, J. Doychak, and D. Gaydosh, Oxidation of Metals 34, 259 (1990).CrossRefGoogle Scholar
  40. 40.
    P. Hou, Journal of the American Ceramic Society 86, 660 (2003).CrossRefGoogle Scholar
  41. 41.
    C. Xu, W. Gao, and H. Gong, Intermetallics 8, 769 (2000).CrossRefGoogle Scholar
  42. 42.
    R. Klumpes, C. Maree, E. Schramm, and J. Wit, Materials and Corrosion 47, 619 (1996).CrossRefGoogle Scholar
  43. 43.
    H. Grabke, M. Brumm, and B. Wagemann, Materials and Corrosion 47, 675 (1996).CrossRefGoogle Scholar
  44. 44.
    D. Zhong, J. J. Moore, E. Sutter, and B. Mishra, Surface and Coatings Technology 200, 1236 (2005).CrossRefGoogle Scholar
  45. 45.
    C. H. Xu, W. Gao, and Y. D. He, Scripta Materialia 42, 975 (2000).CrossRefGoogle Scholar
  46. 46.
    K. N. Lee and W. L. Worrell, Oxidation of Metals 32, 357 (1989).CrossRefGoogle Scholar
  47. 47.
    H. X. Dong, Y. Jiang, Y. H. He, J. Zou, N. P. Xu, B. Y. Huang, et al., Materials Chemistry and Physics 122, 417 (2010).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Functional Materials, Materials Science DepartmentSaarland UniversitySaarbrückenGermany
  2. 2.Department of Materials Science and EngineeringSaarland UniversitySaarbrückenGermany

Personalised recommendations