Advertisement

Oxidation of Metals

, Volume 80, Issue 3–4, pp 231–242 | Cite as

Effect of Ti (Macro-) Alloying on the High-Temperature Oxidation Behavior of Ternary Mo–Si–B Alloys at 820–1,300 °C

  • Maria Azimovna AzimEmail author
  • Steffen Burk
  • Bronislava Gorr
  • Hans-Jürgen Christ
  • Daniel Schliephake
  • Martin Heilmaier
  • Rainer Bornemann
  • Peter Haring Bolívar
Original Paper

Abstract

The aim of the present investigation was to gain an initial understanding of the effect of (macro-) alloying with Ti on the oxidation behavior of Mo–Si–B alloys in the ternary phase region of Mo_ss–Mo3Si–Mo5SiB2 at 820–1,300 °C. Motivated by recent studies and thermodynamic calculations, the alloy compositions Mo–9Si–8B–29Ti (at.%) and Mo–12.5Si–8.5B–27.5Ti (at.%) were selected and synthesized by arc-melting. Compared to the reference alloy Mo–9Si–8B, superior initial oxidation rates at 1,100–1,300 °C as well as a significant density reduction by nearly 18 % were observed. Due to enhanced initial evaporation of MoO3 and mainly inward diffusion of oxygen, a borosilicate-rutile duplex scale with a continuous TiO2 phase had formed. Detailed investigations of the oxidation mechanism by SEM, EDX, XRD and confocal micro-Raman spectroscopy indicated that Ti alloying is promising with regard to further improvement of the oxidation resistance as well as the strength-to-weight ratio of Mo–Si–B alloys.

Keywords

Ultra-high temperature materials Mo–Si–B alloys Titania Silica 

Notes

Acknowledgments

Financial support by Deutsche Forschungsgemeinschaft (DFG) within the framework of the research unit 727 “Beyond Ni-Base Superalloys” is gratefully acknowledged. The authors would like to thank E. P. George and H. Bei for the preparation of the alloys in ORNL.

References

  1. 1.
    D. M. Berczik, US Patent No. 5,693,156 (1997).Google Scholar
  2. 2.
    S. Burk, “High temperature oxidation of Mo-based alloys considering the influence of surrounding atmosphere and alloying methods” PhD Thesis, Institut für Werkstofftechnik, Universität Siegen, 2011.Google Scholar
  3. 3.
    R. Sakidja, J. H. Perepezko, S. Kim and N. Sekido, Acta Materialia 56, 2008 (5223).CrossRefGoogle Scholar
  4. 4.
    Y. Yang, Y. A. Chang, L. Tan and Y. Du, Material Science and Engineering A 362, 2003 (281).CrossRefGoogle Scholar
  5. 5.
    Y. Yang, H. Bei, S. Chen, E. P. George, J. Tiley and Y. Austin Chang, Acta Materialia 58, 2010 (541).CrossRefGoogle Scholar
  6. 6.
    K. Yoshimi, S. Nakatani, T. Suda, S. Hanada and H. Habazaki, Intermetallics 10, 2002 (407).CrossRefGoogle Scholar
  7. 7.
    M. K. Meyer and M. Akinc, Journal of the American Ceramic Society 79, 1996 (938).CrossRefGoogle Scholar
  8. 8.
    M. K. Meyer, A. J. Thom and M. Akinc, Intermetallics 7, 1999 (153).CrossRefGoogle Scholar
  9. 9.
    J. B. Berkowitz-Mattuck and R. R. Dils, Journal of the Electrochemical Society 112, 1965 (583).CrossRefGoogle Scholar
  10. 10.
    E. C. T. Ramos, G. Silva, A. S. Ramos, C. A. Nunes and C. A. R. P. Baptista, Material Science and Engineering A 363, 2003 (297).CrossRefGoogle Scholar
  11. 11.
    J. D. Axe and G. Shirane, Physical Review B 1, 1970 (342).CrossRefGoogle Scholar
  12. 12.
    R. W. Ricker and R. A. Hummel, Journal of the American Ceramic Society 34, 1951 (27).CrossRefGoogle Scholar
  13. 13.
    Website http://rruff.info/. Accessed Mar 2012.
  14. 14.
    P. H. C. Eilers and H. F. M. Boelens, Baseline Correction with Asymmetric Least Square Smoothing, Report (Leiden University Medical Centre, 2005).Google Scholar
  15. 15.
    S. Melsheimer, M. Fietzek, V. Kolarik, A. Rahmel and M. Schütze, Oxidation of Metals 47, 1996 (139).CrossRefGoogle Scholar
  16. 16.
    A. J. Thom, Y. Kim and M. Akinc, Material Research Society Symposium Proceedings 288, 1992 (1037).CrossRefGoogle Scholar
  17. 17.
    P. Kofstad, Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxide, (Wiley, New York, 1972).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Maria Azimovna Azim
    • 1
    Email author
  • Steffen Burk
    • 1
  • Bronislava Gorr
    • 1
  • Hans-Jürgen Christ
    • 1
  • Daniel Schliephake
    • 2
  • Martin Heilmaier
    • 2
  • Rainer Bornemann
    • 3
  • Peter Haring Bolívar
    • 3
  1. 1.Institut für WerkstofftechnikUniversität SiegenSiegenGermany
  2. 2.Institut für Angewandte Materialien-Werkstoffkunde (IAM-WK)Karlsruher Institut für Technologie (KIT)KarlsruheGermany
  3. 3.Institut für Höchstfrequenztechnik und QuantenelektronikUniversität SiegenSiegenGermany

Personalised recommendations