Oxidation of Metals

, Volume 80, Issue 3–4, pp 219–230 | Cite as

A Study on Effect of Reactive and Rare Earth Element Additions on the Oxidation Behavior of Mo–Si–B System

  • Sanjib MajumdarEmail author
  • S. Burk
  • D. Schliephake
  • M. Krüger
  • H.-J. Christ
  • M. Heilmaier
Original Paper


Mo–9Si–8B–1Ti, Mo–9Si–8B–1.8Ti, Mo–9Si–8B–0.2La and Mo–9Si–8B–0.4La2O3 (at.%) alloys were prepared using mechanical alloying followed by hot isostatic pressing and field assisted sintering. XRD, SEM and EBSD analysis confirmed the formation of Mo solid solution, A15 and T2 phases in the alloys. Isothermal oxidation behavior of the specimens was studied in the temperature range from 750 to 1,300 °C for up to 100 h. Both the Ti and La containing alloys showed superior oxidation behavior compared to unalloyed Mo–Si–B at 900 °C at the initial periods of oxidation. Ti-added alloys suffered higher rate of weight loss at higher temperatures (1,000–1,300 °C) due to the formation of non-protective low viscosity SiO2-TiO2-B2O3 scale. La-alloyed Mo–Si–B showed superior oxidation resistance at intermediate temperatures (900 °C) as well as at higher temperatures. Enrichment of La at the oxide/alloy interface was found to be the reason for improved oxidation behavior of La-alloyed Mo–Si–B. Amongst the four materials studied, the La2O3 containing alloy showed the best oxidation resistance at 900 °C.


Mo–Si–B system Catastrophic oxidation Micro-alloying Reactive and rare earth elements 



S. Majumdar wishes to thank Alexander von Humboldt Foundation, Bonn for financial support of the research stay at Siegen. The research support by Deutsche Forschungsgemeinschaft (DFG) within the framework of the research unit 727 “Beyond Ni-Base Superalloys” is gratefully acknowledged.


  1. 1.
    John H. Perepezko, Science 20, 2009 (1068).CrossRefGoogle Scholar
  2. 2.
    M. Heilmaier, M. Kruger, H. Saage, J. Rosler, D. Mukherji, U. Glatzel, R. Volkl, R. Huttner, G. Eggeler, Ch Somsen, T. Depka, H.-J. Christ, B. Gorr and S. Burk, Journal of Metals 67, 2009 (61).Google Scholar
  3. 3.
    E. W. Lee, J. Cook, A. Khan, R. Mahapatra and J. Waldman, Journal of Metals 43, 1991 (54).Google Scholar
  4. 4.
    A. K. Vasudevan and J. J. Petrovic, Materials Science and Engineering A 155, 1992 (1).CrossRefGoogle Scholar
  5. 5.
    D. E. Alman, K. G. Shaw, N. S. Stoloff and K. Rajan, Materials Science and Engineering A 155, 1992 (85).CrossRefGoogle Scholar
  6. 6.
    T. C. Chou and T. G. Nieh, Scripta Metallurgical et Materialia 27, 1992 (19).CrossRefGoogle Scholar
  7. 7.
    D. L. Anton and M. M. Shah, “High temperature properties of refractory intermetallics”, Materials Research Society Symposium Proceedings 213, 1991, pp. 733–739.Google Scholar
  8. 8.
    M. K. Meyer and M. Akinc, Journal of American Ceramic Society 79, 1996 (2763).CrossRefGoogle Scholar
  9. 9.
    V. Supatarawanich, D. R. Johnson and C. T. Liu, Materials Science and Engineering A 344, 2003 (328).CrossRefGoogle Scholar
  10. 10.
    T. A. Parthasarathy, M. G. Mendiratta and D. M. Dimiduk, Acta Materialia 50, 2002 (1857).CrossRefGoogle Scholar
  11. 11.
    S. Burk, B. Gorr, V. B. Trindade and H.-J. Christ, Oxidation of Metals 73, 2010 (163).CrossRefGoogle Scholar
  12. 12.
    B. A. Pint, Oxidation of Metals 49, 1998 (531).CrossRefGoogle Scholar
  13. 13.
    N. Hiramatsu and F. H. Stott, Oxidation of Metals 51, 1999 (479).CrossRefGoogle Scholar
  14. 14.
    B. A. Pint, Oxidation of Metals 45, 1996 (1).CrossRefGoogle Scholar
  15. 15.
    T. J. Nijdam and W. G. Sloof, Acta Materialia 55, 2007 (5980).CrossRefGoogle Scholar
  16. 16.
    D. Naumenko, B. Gleeson, E. Wessel, L. Singheiser and W. J. Quadakkers, Metallurgical and Materials Transactions A 38, 2007 (2974).CrossRefGoogle Scholar
  17. 17.
    D. P. Whittle and J. Stringer, Philosophical Transactions of Royal Society London 295, 1980 (309).Google Scholar
  18. 18.
    M. G. Hebsur and J. R. Stephens, U. S. Patent No. 4,983,358 (8 January 1991).Google Scholar
  19. 19.
    A. Mueller, G. Wang, R. A. Rapp, E. L. Courtright and T. A. Kircher, Materials Science and Engineering A 155, 1992 (199).CrossRefGoogle Scholar
  20. 20.
    Ying Yang, H. Bei, Shuanglin Chen, E. P. George, Jaimie Tiley and Austin Chang, Acta Materialia 58, 2010 (541).CrossRefGoogle Scholar
  21. 21.
    H. Okamoto, Desk Handbook-Phase Diagrams for Binary Alloys, ASM International, 2000.Google Scholar
  22. 22.
    D. M. Dimiduk and J. H. Perepezko, MRS Bulletin 28, 2003 (639).CrossRefGoogle Scholar
  23. 23.
    J. H. Schneibel, R. O. Ritchie, J. J. Kruzic and P. F. Tortorelli, Metallurgical and Materials Transactions A 36, 2005 (525).CrossRefGoogle Scholar
  24. 24.
    S. H. Ehrmann, S. K. Friedlander and M. R. Zachariah, Journal of Materials Research 14, 1999 (4551).CrossRefGoogle Scholar
  25. 25.
    Steffen Burk, Bronislava Gorr, Hans-Jürgen Christ, Daniel Schliephake, Martin Heilmaier, Christian Hochmuth and Uwe Glatzel, Scripta Materialia 66, 2012 (223).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Sanjib Majumdar
    • 1
    • 4
    Email author
  • S. Burk
    • 1
  • D. Schliephake
    • 2
  • M. Krüger
    • 3
  • H.-J. Christ
    • 1
  • M. Heilmaier
    • 2
  1. 1.Institut für WerkstofftechnikUniversität SiegenSiegenGermany
  2. 2.Institut für Angewandte Materialien-Werkstoffkunde (IAM-WK), Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  3. 3.Institut für Werkstoff- und FügetechnikUniversität MagdeburgMagdeburgGermany
  4. 4.Materials Processing DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations