Oxidation of Metals

, Volume 79, Issue 3–4, pp 405–427

Slow Transition from Protective to Breakaway Oxidation of Haynes 214 Foil at High Temperature

  • D. J. Young
  • A. Chyrkin
  • J. He
  • D. Grüner
  • W. J. Quadakkers
Original Paper


The oxidation behaviour of thin sheet specimens of the alumina forming nickel base alloy 214 in the temperature range 1,100–1,200 °C is described. Rapid transient oxidation produces a spinel oxide layer which then stops growing, as a protective alumina layer forms beneath. The slow growth of this alumina ceases when the alloy aluminium content is exhausted. Subsequent formation of an innermost chromia layer signals an increase in oxygen activity at the scale-alloy interface. The abnormally slow growth of this layer extends the alloy lifetime. Examination of individual layer growth processes revealed a complex time dependence of spinel composition as a result of Cr evaporation, and dissolution of alumina in the innermost chromia.


Nickel base alloy Breakaway oxidation Alloy 214 Alumina Cr-evaporation Transient spinel 


  1. 1.
    D. J. Young, High Temperature Oxidation and Corrosion of Metals, (Elsevier, Oxford, 2008).Google Scholar
  2. 2.
    C. Gindorf, L. Singheiser, and K. Hilpert, Steel Research 72, 528 (2001).Google Scholar
  3. 3.
    W. J. Quadakkers, J. Piron-Abellan, V. Shemet, and L. Singheiser, Materials at High Temperatures 20, 115 (2003).CrossRefGoogle Scholar
  4. 4.
    J. Froitzheim, H. Ravash, E. Larsson, L. G. Johansson, and J. E. Svensson, Journal of the Electrochemical Society 157, B1295 (2010).CrossRefGoogle Scholar
  5. 5.
    D. J. Young and B. A. Pint, Oxidation of Metals 66, 137 (2006).CrossRefGoogle Scholar
  6. 6.
    D. Naumenko, V. Shemet, L. Singheiser, and W. J. Quadakkers, Journal of Materials Science 44, 1687 (2009).CrossRefGoogle Scholar
  7. 7.
    C. T. Sims, N. S. Stoloff, and W. C. Hagel, Superalloys II—High Temperature Materials for Aerospace and Industrial Power (Wiley, New York, 1987).Google Scholar
  8. 8.
    M. Bensch, J. Preussner, R. Huttner, G. Obigodi, S. Virtanen, J. Gabel, and U. Glatzel, Acta Materialia 58, 1607 (2010).CrossRefGoogle Scholar
  9. 9.
    R. Janakiraman, G. H. Meier, and F. S. Pettit, Metallurgical and Materials Transactions A 30, 2905 (1999).CrossRefGoogle Scholar
  10. 10.
    V. P. Deodeshmukh, S. J. Matthews, and D. L. Klarstrom, International Journal of Hydrogen Energy 36, 4580 (2011).CrossRefGoogle Scholar
  11. 11.
    B. A. Pint, L. R. Walker, and I. G. Wright, Materials at High Temperatures 21, 175 (2004).CrossRefGoogle Scholar
  12. 12.
    I. E. Anderson, B. K. Lograsso, R. Terpstra, and B. Gleeson, in Powder Metallurgy Alloys and Particulate Materials for Industrial Applications, eds., D. E. Alman and J. W. Newkirk (TMS, Warrandale, 2000), p. 11.Google Scholar
  13. 13.
    H. P. Degischer and B. Kriszt, Handbook of Cellular Metals: Production, Processing Applications (Wiley-VCH, Weinheim, 2002).CrossRefGoogle Scholar
  14. 14.
    W. J. Quadakkers and K. Bongartz, Werkstoffe und Korrosion 45, 232 (1994).CrossRefGoogle Scholar
  15. 15.
    D. Naumenko, L. Singheiser, and W. J. Quadakkers, in Cyclic Oxidation of High Temperature Materials (EFC Publications, Frankfurt, 1999), p. 287.Google Scholar
  16. 16.
    H. E. Evans, A. T. Donaldson, and T. C. Gilmour, Oxidation of Metals 52, 379 (1999).CrossRefGoogle Scholar
  17. 17.
    W. J. Quadakkers and M. J. Bennett, Materials Science and Technology 10, 126 (1994).CrossRefGoogle Scholar
  18. 18.
    V. P. Deodeshmukh and S. K. Srivastava, in Superalloys 2008 (Seven Springs, PA, 2008), p. 689.Google Scholar
  19. 19.
    D. J. Young, A. Chyrkin, and W. J. Quadakkers, Oxidation of Metals 77, 253 (2012).CrossRefGoogle Scholar
  20. 20.
    W. J. Quadakkers, A. Elschner, W. Speier, and H. Nickel, Applied Surface Science 52, 271 (1991).CrossRefGoogle Scholar
  21. 21.
    W. J. Quadakkers and H. Viefhaus, in EFC-Workshop “Methods and Testing in High Temperature Corrosion”, eds., H. J. Grabke and D. B. Meadowcroft (The Institute of Materials, Frankfurt, 1995).Google Scholar
  22. 22.
    B. A. Pint, R. W. Swindeman, K. L. More, and P. F. Tortorelli, ASME Paper 2001-GT-445, presented at the International Gas Turbine Aeroengine Congress Exhibition, New Orleans, LA, June 4–7 (2001).Google Scholar
  23. 23.
    C. S. Giggins and F. S. Pettit, Journal of the Electrochemical Society 118, 1782 (1971).CrossRefGoogle Scholar
  24. 24.
    L. Hu, D. B. Hovis, and A. H. Heuer, Oxidation of Metals 73, 275 (2010).CrossRefGoogle Scholar
  25. 25.
    B. H. Kear, F. S. Pettit, L. P. Lemaire, and D. E. Fornwalt, Oxidation of Metals 3, 557 (1971).CrossRefGoogle Scholar
  26. 26.
    G. C. Wood and B. Chattopa, Corrosion Science 10, 471 (1970).CrossRefGoogle Scholar
  27. 27.
    G. C. Wood, B. Chattopa, and F. H. Stott, Journal of the Electrochemical Society 117, 254 (1970).CrossRefGoogle Scholar
  28. 28.
    M. C. Maris-Sida, G. H. Meier, and F. S. Pettit, Metallurgical and Materials Transactions A 34, 2609 (2003).CrossRefGoogle Scholar
  29. 29.
    F. A. Elrefaie and W. W. Smeltzer, Journal of the Electrochemical Society 128, 2237 (1981).CrossRefGoogle Scholar
  30. 30.
    K. T. Jacob and C. B. Alcock, Journal of Solid State Chemistry 20, 79 (1977).CrossRefGoogle Scholar
  31. 31.
    A. Borgenstam, A. Engstrom, L. Hoglund, and J. Agren, Journal of Phase Equilibria 21, 269 (2000).CrossRefGoogle Scholar
  32. 32.
    MOBNi1, TCS Ni-Alloys Mobility Database (Royal Institute of Technology, Foundation of Computational Thermodynamics, Stockholm, 2006).Google Scholar
  33. 33.
    TTNI7, TT Ni-Based Superalloys Database (Thermo-Calc Software AB, Stockholm, 2006).Google Scholar
  34. 34.
    F. Bondioli, A. M. Ferrari, C. Leonelli, T. Manfredini, L. Linati, and P. Mustarelli, Journal of the American Ceramic Society 83, 2036 (2000).CrossRefGoogle Scholar
  35. 35.
    G. J. Tatlock, H. Al-Badairy, M. J. Bennett, and J. R. Nicholls, Materials at High Temperatures 22, 467 (2005).CrossRefGoogle Scholar
  36. 36.
    G. Strehl, H. Al-Badairy, L. M. Rodriguez, J. Klower, G. Borchardt, G. Tatlock, and A. J. Criado, in Cyclic Oxidation of High Temperature Materials: Mechanisms, Testing Methods, Characterisation and Life Time Estimation (EFC Publications, Frankfurt, 1999), p. 82.Google Scholar
  37. 37.
    D. J. Potter and G. J. Tatlock, High Temperature Corrosion and Protection of Materials 7(Pts 1 and 2) 1093 (2008).Google Scholar
  38. 38.
    H. E. Evans and M. P. Taylor, Oxidation of Metals 55, 17 (2001).CrossRefGoogle Scholar
  39. 39.
    D. Caplan and G. I. Sproule, Oxidation of Metals 9, 459 (1975).CrossRefGoogle Scholar
  40. 40.
    G. R. Holcomb, Oxidation of Metals 69, 163 (2008).CrossRefGoogle Scholar
  41. 41.
    H. Asteman, J. E. Svensson, L. G. Johansson, and M. Norell, Oxidation of Metals 52, 95 (1999).CrossRefGoogle Scholar
  42. 42.
    P. Saltykov, O. Fabrichnaya, J. Golczewski, and F. Aldinger, Journal of Alloys and Compounds 381, 99 (2004).CrossRefGoogle Scholar
  43. 43.
    M. Schütze, M. Malessa, D. Renusch, P. F. Tortorelli, I. G. Wright, and R. B. Dooley, in High-Temperature Oxidation and Corrosion (ISHOC 2005, Nara, Japan, 30 Nov–2 Dec 2006), p. 393.Google Scholar
  44. 44.
    K. T. Jacob, Journal of the Electrochemical Society 125, 175 (1978).CrossRefGoogle Scholar
  45. 45.
    K. P. Trumble and M. Rühle, Acta Metall. Mater. 39, 1915 (1991).CrossRefGoogle Scholar
  46. 46.
    B. Jansson, M. Schalin, M. Selleby, and B. Sundman, in Computer Software in Chemical and Extractive Metallurgy, eds., C. W. Bale and G. A. Irons (Canadian Inst Mining, Metallurgy and Petroleum, Montreal, 1993), p. 57.Google Scholar
  47. 47.
    W. J. Quadakkers, H. Holzbrecher, K. G. Briefs, and H. Beske, Oxidation of Metals 32, 67 (1989).CrossRefGoogle Scholar
  48. 48.
    B. Pujilaksono, T. Jonsson, H. Heidari, M. Halvarsson, J. E. Svensson, and L. G. Johansson, Oxidation of Metals 75, 183 (2011).CrossRefGoogle Scholar
  49. 49.
    W. G. Sloof and T. J. Nijdam, International Journal of Materials Research 100, 1318 (2009).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • D. J. Young
    • 1
  • A. Chyrkin
    • 2
  • J. He
    • 2
  • D. Grüner
    • 2
  • W. J. Quadakkers
    • 2
  1. 1.School of Materials Science and EngineeringThe University of New South WalesSydneyAustralia
  2. 2.Forschungszentrum Jülich GmbHJulichGermany

Personalised recommendations