Oxidation of Metals

, Volume 79, Issue 3–4, pp 261–277 | Cite as

Zirconia Layer Formed by High Temperature Oxidation of Pure Zirconium: Stress Generated at the Zirconium/Zirconia Interface

  • Lukasz Kurpaska
  • Jerome Favergeon
  • Laurent Lahoche
  • Gerard Moulin
  • Mimoun El Marssi
  • Jean-Marc Roelandt
Original Paper


Oxidation of pure zirconium metal at high temperature (500 and 600 °C) under air at normal atmospheric pressure was investigated using the Raman Spectroscopy technique. Analysis of the absolute intensities as well as the positions of the Raman bands for the tetragonal and the monoclinic zirconia phases was performed. Evolution of the thermal stress has been presented and discussed in comparison to the Raman mode shift recorded in situ during cooling. Ex-situ analyses of cross-sections confirm the presence of tetragonal phase preferentially located close to the metal/oxide interface and show the existence of a relaxed and highly disordered tetragonal phase preferentially located in the outer part of the scale. Using a micro tension––compression machine, it is shown that compression loads lead to a significant intensity change of the Raman peaks for the tetragonal zirconia. The effect of tension load appears less clear which demonstrates that the relation between Raman peak shift and stress is not as simple as generally considered.


Anionic oxidation Mechanical stress Zr/ZrO2 system Raman spectroscopy 



The authors would like to thank the “Region Picardie” and the European Regional Development Found (ERDF) for the financial support of this work through the “SIGMA-FILM” project.


  1. 1.
    P. Bouvier, J. Godlewski and G. Lucazeau, Journal of Nuclear Materials 300, 2002 (118).CrossRefGoogle Scholar
  2. 2.
    C. Roy and B. Burgess, Oxidation of Metals 2, 1970 (235).CrossRefGoogle Scholar
  3. 3.
    M. Parise, O. Sicardy and G. Cailletaud, Journal of Nuclear Materials 256, 1998 (35).CrossRefGoogle Scholar
  4. 4.
    J. Godlewski, Oxydation d’alliages de zirconium en vapeur d’eau: influence de la zircone tetragonale sur le mécanisme de croissance de l’oxyde, Ph.D. thesis. Université de Technologie de Compiègne 1990.Google Scholar
  5. 5.
    P. Bouvier, Etude Raman des distributions de phase de contrainte dans des couches d’oxydation d’alliages de zirconium Ph.D. thesis. Intitue National Politechnique de Genoble 2000.Google Scholar
  6. 6.
    J. Godlewski, Tenth International Symposium on Zirconium in the Nuclear Industry: ASTM STP 1245 (1994).Google Scholar
  7. 7.
    Le Duc Huy, P. Laffez, P. Daniel, A. Jouanneaux, N. The Khoi, D. Simeone, Materials Science and Engineering B104, 163 (2003).Google Scholar
  8. 8.
    L. Kurpaska, M. El-Marssi, J. Favergeon, L. Lahoche, G. Moulin, J-M. Roelandt, Journal of Nuclear Materials, to be submitted (2012).Google Scholar
  9. 9.
    P. Barberis and A. Frichet, Journal of Nuclear Materials 273, 1999 (182).CrossRefGoogle Scholar
  10. 10.
    J. E. Maslar, W. S. Hurst, W. J. Bowers Jr. and J. H. Hendricks, Journal of Nuclear Materials 298, 2001 (239).CrossRefGoogle Scholar
  11. 11.
    A. M. Huntz, Materials Science and Technology 4, 1988 (1079).CrossRefGoogle Scholar
  12. 12.
    L. Li, Modélisation numérique de l’endommagement des couches en proche surface: application aux systèmes Ni/NiO et Zr/ZrO 2 , Ph.D. thesis. Université de Technologie de Compiègne, 2011.Google Scholar
  13. 13.
    X. G. Lu, M. Selleby and B. Sundman, Computer Coupling of Phase Diagrams and Thermochemistry 29, 2005 (68).CrossRefGoogle Scholar
  14. 14.
    S. K. Durrani, J. Akhtar, M. Ahmed and M. A. Hussain, Materials Chemistry and Physics 100, 2006 (324).CrossRefGoogle Scholar
  15. 15.
    N. Petigny, P. Barberis, C. Lemaignan, Ch Valot and M. Lallemant, Journal of Nuclear Materials 280, 2000 (318).CrossRefGoogle Scholar
  16. 16.
    P. Bouvier and G. Lucazeau, Journal of Physics and Chemistry of Solids 61, 2000 (569).CrossRefGoogle Scholar
  17. 17.
    P. Barberis, T. Merle-Mejean and P. Quintard, Journal of Nuclear Materials 246, 1997 (232).CrossRefGoogle Scholar
  18. 18.
    X. Iltis, F. Lefebvre and C. Lemaignan, Journal of Nuclear Materials 224, 1995 (191).Google Scholar
  19. 19.
    M. Wojdyr, Journal of Applied Crystallography 43, 2010 (1126).CrossRefGoogle Scholar
  20. 20.
    P. Barberis, G. Corolleur-Thomas, R. Guinebretiere, T. Merle-Mejean, A. Mirgorodsky and P. Quintard, Journal of Nuclear Materials 288, 2001 (241).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Lukasz Kurpaska
    • 1
    • 3
  • Jerome Favergeon
    • 1
  • Laurent Lahoche
    • 3
  • Gerard Moulin
    • 1
  • Mimoun El Marssi
    • 2
  • Jean-Marc Roelandt
    • 1
  1. 1.Laboratoire ROBERVAL, UMR 6253Universite de Technologie de Compiegne, Centre de Recherches de RoyallieuCompiègneFrance
  2. 2.Laboratoire de Physique de la Matiere CondenseUniversite de Picardie Jules VerneAmiensFrance
  3. 3.Laboratoire des Technologies InnovantesUniversite de Picardie Jules VerneAmiensFrance

Personalised recommendations