Advertisement

Oxidation of Metals

, Volume 78, Issue 5–6, pp 269–284 | Cite as

First Stages of Oxidation of Pt-Modified Nickel Aluminide Bond Coat Systems at Low Oxygen Partial Pressure

  • J. M. Alvarado-Orozco
  • R. Morales-Estrella
  • M. S. Boldrick
  • J. L. Ortiz-Merino
  • D. G. Konitzer
  • G. Trápaga-Martínez
  • J. Muñoz-Saldaña
Original Paper

Abstract

The θ-Al2O3 → α-Al2O3 phase transformation was investigated in thermally grown oxide formed on β-(Ni,Pt)Al bond coats during isothermal exposures at 900–1,200 °C in an argon atmosphere stream with the O2 partial pressure of 1 × 10−5 atm. Local curve fitting was used to evaluate the evolution of the parabolic rate constant, k p , using a general kinetic model (t = A + BΔm + CΔm 2), during the first 5 h of oxidation. All net mass–gain curves exhibited deviations from the classic parabolic model, Δm = k p t ½; a steady state regime was established only after 4 h of exposures, except for the sample oxidized at 1,100 °C.

Keywords

TBC systems TGO Platinum aluminide Oxidation kinetics Alumina 

Notes

Acknowledgments

The authors thank B. Gleeson at the University of Pittsburgh, USA, for stimulating discussions. This project was funded by Conacyt FOMIX-QRO-2008-C02-10599. The authors also thank Wilber Antunez Flores at the Laboratorio Nacional de Nanotecnologia (CIMAV) for the technical support during samples characterization by SEM.

The authors express their grateful acknowledgment to the technical support from Wilber Antunez Flores.

References

  1. 1.
    J. R. Nicholls, MRS Bulletin 28, 659 (2003).CrossRefGoogle Scholar
  2. 2.
    D. R. Clarke and C. G. Levi, Annual Review of Materials Research 33, 383 (2003).CrossRefGoogle Scholar
  3. 3.
    R. C. Reed, The Superalloys Fundamentals and Applications (Cambridge University Press, Cambridge, 2006), p. 283.CrossRefGoogle Scholar
  4. 4.
    S. Bose, High Temperature Coatings (Elsevier, Amsterdam, 2007), p. 155.CrossRefGoogle Scholar
  5. 5.
    W. Gao and Z. Li, Developments in High-Temperature Corrosion and Protection of Materials (Woodhead Publishing, Cambridge, 2008), p. 476.CrossRefGoogle Scholar
  6. 6.
    A. G. Evans, D. R. Clarke, and C. G. Levi, Journal of the European Ceramic Society 28, 1405 (2008).CrossRefGoogle Scholar
  7. 7.
    P. Y. Hou, Annual Review of Materials Research 38, 275 (2008).CrossRefGoogle Scholar
  8. 8.
    B. Pieraggi and R.A. Rapp, Journal de Physique IV, Colloque C9, supplément au Journal de Physique III, 275 (1993).Google Scholar
  9. 9.
    B. A. Pint, Oxidation of Metals 45, 1 (1996).CrossRefGoogle Scholar
  10. 10.
    B. M. Warnes, Surface & Coatings Technology 146–147, 7 (2001).CrossRefGoogle Scholar
  11. 11.
    B. A. Pint, Proceedings of the John Stringer Symposium (ASM, Materials Park, OH, 2001).Google Scholar
  12. 12.
    B. A. Pint, Journal of the American Ceramic Society 86, 686 (2003).CrossRefGoogle Scholar
  13. 13.
    J. A. Haynes, B. A. Pint, K. L. More, Y. Zhang, and I. G. Wright, Oxidation of Metals 58, 513 (2002).CrossRefGoogle Scholar
  14. 14.
    D. Toma, W. Brandl, and U. Koster, Oxidation of Metals 53, 125 (2000).CrossRefGoogle Scholar
  15. 15.
    V. K. Champagne, The Cold Spray Materials Deposition Process Fundamentals And Applications (Woodhead, Cambridge, 2007), p. 245.CrossRefGoogle Scholar
  16. 16.
    M. Matsumoto, Surface & Coatings Technology 202, 2743 (2008).CrossRefGoogle Scholar
  17. 17.
    S. Kitaoka, T. Kuroyama, M. Matsumoto, R. Kitazawa, and Y. Kagawa, Corrosion Science 52, 429 (2010).CrossRefGoogle Scholar
  18. 18.
    I. Spitsberg and K. Moreb, Materials Science and Engineering A A417, 322 (2006).CrossRefGoogle Scholar
  19. 19.
    V. K. Tolpygo and D. R. Clarke, Surface & Coatings Technology 200, 1276 (2005).CrossRefGoogle Scholar
  20. 20.
    L. M. He, Y. F. Su, L. F. Allard, M. J. Lance, and W. Y. Lee, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 35A, 1113 (2004).Google Scholar
  21. 21.
    A. Hesnawi, L. Hefei, Z. Zhaohui, G. Shengkai, and X. Huibin, Surface & Coatings Technology 201, 6793 (2007).CrossRefGoogle Scholar
  22. 22.
    A. H. Heuer, D. B. Hovis, J. L. Smialek, and B. Gleeson, Journal of the American Ceramic Society 94, S146 (2011).CrossRefGoogle Scholar
  23. 23.
    M. W. Brumm and H. J. Grabke, Corrosion Science 33, 79 (1992).CrossRefGoogle Scholar
  24. 24.
    T. G. Tammann, Zeitschrift für Anorganische und Allgemeine Chemie 111, 78 (1920).CrossRefGoogle Scholar
  25. 25.
    N. B. Pilling and R. E. Bedworth, Journal Institute of Metals 29, 529 (1923).Google Scholar
  26. 26.
    C. Wagner, Journal of the Electrochemical Society 99, 369 (1952).CrossRefGoogle Scholar
  27. 27.
    D. Monceau and B. Pieraggi, Oxidation of Metals 50, 477 (1998).CrossRefGoogle Scholar
  28. 28.
    B. Pieraggi, Oxidation of Metals 27, 177 (1987).CrossRefGoogle Scholar
  29. 29.
    W. J. Quadakkers, D. Naumenko, E. Wessel, V. Kochubey, and L. Singheiser, Oxidation of Metals 61, 17 (2004).CrossRefGoogle Scholar
  30. 30.
    Q. Ma and D. R. Clarke, Journal of the American Ceramic Society 76, 1433 (1993).CrossRefGoogle Scholar
  31. 31.
    D. M. Lipkin and D. R. Clarke, Oxidation of Metals 45, 267 (1996).CrossRefGoogle Scholar
  32. 32.
    D. M. Lipkin, H. Schaffer, F. Adar, and D. R. Clarke, Applied Physics Letters 70, 2550 (1997).CrossRefGoogle Scholar
  33. 33.
    X. Lu, S. Venugopalan, Kim Hyunjung, M. Grimsditch, S. Rodriguez, and A. K. Ramdas, Physical Review B: Condensed Matter 79, 5204 (2009).Google Scholar
  34. 34.
    G. C. Rybicki and J. L. Smialek, Oxidation of Metals 31, 275 (1989).CrossRefGoogle Scholar
  35. 35.
    T. F. An, H. R. Guan, X. F. Sun, and Z. Q. Hu, Oxidation of Metals 54, 301 (2000).CrossRefGoogle Scholar
  36. 36.
    D. Monceau, K. Bouhanek, R. Peraldi, A. Malie, and B. Pieraggi, Journal of Materials Research 15, 665 (2000).CrossRefGoogle Scholar
  37. 37.
    V. K. Tolpygo, D. R. Clarke, and K. S. Murphy, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 32A, 1467 (2001).CrossRefGoogle Scholar
  38. 38.
    L. Xie, Y. Sohn, E. H. Jordan, and M. Gell, Surface & Coatings Technology 176, 57 (2003).CrossRefGoogle Scholar
  39. 39.
    J. Jedlinski and G. Borchardt, Solid State Ionics 50, 67 (1992).CrossRefGoogle Scholar
  40. 40.
    J. Doychak, J. L. Smialek, and T. E. Mitchell, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 20A, 499 (1989).Google Scholar
  41. 41.
    B. A. Pint, J. R. Martinans, and L. W. Hobbs, Solid State Ionics 78, 99 (1995).CrossRefGoogle Scholar
  42. 42.
    J. Doychak, J. L. Smialek, and C.A. Barret, NASA Technical Memorandum, 101455 (1988).Google Scholar
  43. 43.
    M. Wada, T. Matsudaira, and S. Kitaoka, Journal of the Ceramic Society of Japan 119, 832 (2011).CrossRefGoogle Scholar
  44. 44.
    D. Zimmerman, M. Bobeth, M. Rühle, and D. R. Clarke, Zeitschrift fuer Metallkunde 95, 84 (2004).Google Scholar
  45. 45.
    J. L. Smialek, Metallurgical and Materials Transactions A 9A, 309 (1978).Google Scholar
  46. 46.
    M. W. Brumm and H. J. Grabke, Corrosion Science 34, 547 (1993).CrossRefGoogle Scholar
  47. 47.
    H. Svensson, M. Christensen, P. Knutsson, G. Wahnstrom, and K. Stiller, Corrosion Science 51, 539 (2009).CrossRefGoogle Scholar
  48. 48.
    J. A. Haynes, B. A. Pint, K. L. More, Y. Zhang, and I. G. Wright, Oxidation of Metals 58, 513 (2002).CrossRefGoogle Scholar
  49. 49.
    J. A. Haynes, Scripta Materialia 44, 1147 (2001).CrossRefGoogle Scholar
  50. 50.
    V. K. Tolpygo and D. R. Clarke, Materials at High Temperature 17, 59 (2000).Google Scholar
  51. 51.
    B. W. Veal, A. P. Paulikas, and R. C. Birtcher, Applied Physics Letters 89, 161916 (2006).CrossRefGoogle Scholar
  52. 52.
    B. A. Pint, M. Treska, and L. W. Hobbs, Oxidation of Metals 47, 1 (1997).CrossRefGoogle Scholar
  53. 53.
    D. Renusch, M. Grimsditch, I. Koshelev, B. W. Veal, and P. Y. Hou, Oxidation of Metals 4, 471 (1997).CrossRefGoogle Scholar
  54. 54.
    X. F. Zhang, K. Thaidigsmann, J. Ager, and P. Y. Hou, Journal of Materials Research 21, 1409 (2006).CrossRefGoogle Scholar
  55. 55.
    W. C. Hagel, Corrosion 21, 316 (1965).Google Scholar
  56. 56.
    Y. Cadoret, D. Monceau, M. P. Bacos, P. Jasso, V. Maurice, and P. Marcus, Oxidation of Metals 64, 185 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • J. M. Alvarado-Orozco
    • 1
  • R. Morales-Estrella
    • 2
  • M. S. Boldrick
    • 1
    • 3
  • J. L. Ortiz-Merino
    • 4
  • D. G. Konitzer
    • 5
  • G. Trápaga-Martínez
    • 1
  • J. Muñoz-Saldaña
    • 1
  1. 1.Centro de Investigación y de Estudios Avanzados del IPNQuerétaroMexico
  2. 2.Instituto de Investigaciones Metalúrgicas, UMSHNEdificio “U”, C.U.MichoacánMexico
  3. 3.Peace CorpsQuerétaroMexico
  4. 4.General Electric Infrastructure QuerétaroQuerétaroMexico
  5. 5.General Electric Aircraft EnginesCincinnatiUSA

Personalised recommendations