Oxidation of Metals

, Volume 78, Issue 3–4, pp 197–210 | Cite as

Analysis of the Reactive Element Effect on the Oxidation of Ceria Doped Nickel

  • R. W. Jackson
  • J. P. Leonard
  • L. Niewolak
  • W. J. Quadakkers
  • R. Murray
  • S. Romani
  • G. J. Tatlock
  • F. S. Pettit
  • G. H. Meier
Original Paper

Abstract

The effects of external doping with CeO2 on the oxidation of nickel have been evaluated. The materials studied were pure Ni and Ni with the surface doped with CeO2 by pulsed laser deposition. The oxidation kinetics were measured using thermogravimetric analysis. The oxidation microstructures were observed by scanning electron microscopy and cross-sectional transmission electron microscopy. Compositional analysis was performed with energy dispersive X-ray analysis and sputtering neutrals mass spectrometry. Phase identification was performed using X-ray diffraction. Doping with CeO2 resulted in a significant decrease in the NiO growth rate at intermediate temperatures, e.g. 800 °C. The scales on doped Ni grew primarily inward whereas those on the undoped Ni grew primarily outward. Deposition of the CeO2 dopant onto Ni with a thin, preformed NiO layer produced a similar reduction in the subsequent NiO growth rate. The CeO2 dopant did not reduce the growth rate at high temperature (1,300 °C). The results indicate that the CeO2 dopant influences grain boundary transport in the NiO. Mechanisms are presented to attempt to describe the above observations.

Keywords

Nickel oxide Reactive element effect Oxidation kinetics 

Notes

Acknowledgments

Financial support of this study by the Office of Naval Research through Grant No. N00014-09-1-0564 is gratefully acknowledged.

References

  1. 1.
    R. W. Jackson, J. P. Leonard, F. S. Pettit and G. H. Meier, Solid State Ionics 179, 2111 (2008).CrossRefGoogle Scholar
  2. 2.
    R. W. Jackson, J. P. Leonard, L. Niewolek, W. J. Quadakkers, F. S. Pettit and G. H. Meier, Materials Science Forum 595–598, 1057 (2008).CrossRefGoogle Scholar
  3. 3.
    A. A. Moosa, S. J. Rothman and L. J. Nowicki, Oxidation of Metals 24, 115 (1985).CrossRefGoogle Scholar
  4. 4.
    A. A. Moosa and S. J. Rothman, Oxidation of Metals 24, 133 (1985).CrossRefGoogle Scholar
  5. 5.
    R. Haugsrud, A. E. Gunnaes and O. Nilsen, Oxidation of Metals 3, (4), 215 (2003).CrossRefGoogle Scholar
  6. 6.
    R. Haugsrud, Corrosion Science 45, 1289 (2003).CrossRefGoogle Scholar
  7. 7.
    G. M. Ecer and G. H. Meier, Oxidation of Metals 13, 159 (1979).CrossRefGoogle Scholar
  8. 8.
    G. M. Ecer, R. B. Singh and G. H. Meier, Oxidation Metals l8, 53 (1982).Google Scholar
  9. 9.
    P. Y. Hou and J. Stringer, Materials Science and Engineering A202, 1 (1995).Google Scholar
  10. 10.
    B. Pieraggi and R. A. Rapp, Journal of Electrochemical Society 140, 2844 (1993).CrossRefGoogle Scholar
  11. 11.
    B. Pieraggi, R. A. Rapp and J. P. Hirth, Oxidation of Metals 44, 63 (1995).CrossRefGoogle Scholar
  12. 12.
    A. Strawbridge and R. A. Rapp, Journal of the Electrochemical Society 141, 1905 (1994).CrossRefGoogle Scholar
  13. 13.
    J. P. Hirth and T. E. Mitchell, Acta Materialia 56, 5701 (2008).CrossRefGoogle Scholar
  14. 14.
    W. Bock, M. Kopnarsk and H. Oechsner, Fresenius’ Journal of Analytical Chemistry 353, 510 (1995).CrossRefGoogle Scholar
  15. 15.
    W. J. Quadakkers, A. Elschner, W. Speier and H. Nickel, Applied Surface Science 52, 271 (1991).CrossRefGoogle Scholar
  16. 16.
    N. Solak, M. Zinkevich, and F. Aldinger, Fuel Cells 6, 87 (2006).Google Scholar
  17. 17.
    M. Mogensen, N. M. Sammes and G. A. Tompsett, Solid State Ionics 129, 63 (2000).CrossRefGoogle Scholar
  18. 18.
    M. Kamiya, E. Shimada, Y. Ikuma, M. Komatsu and H. Haneda, Journal of the Electrochemical Society 147, 1222 (2000).CrossRefGoogle Scholar
  19. 19.
    A. Atkinson, R. I. Taylor, and A. E. Hughes, Philosophical Magazine, A45, 823 (1982).Google Scholar
  20. 20.
    A. Atkinson, D. P. Moon, D. W. Smart and R. I. Taylor, Journal of Materials Science 21, 1747 (1986).CrossRefGoogle Scholar
  21. 21.
    R. Haugsrud, Corrosion Science 44, 1569 (2002).CrossRefGoogle Scholar
  22. 22.
    W. C. Johnson, Metallurgical Transaction A 8A, 1413 (1977).CrossRefGoogle Scholar
  23. 23.
    D. M. Duffy and P. W. Tasker, Philosophical Magazine A54, 759 (1986).Google Scholar
  24. 24.
    R. Haugsrud, A. E. Gunnaes and C. R. Simon, Oxidation of Metals 56, 453 (2001).CrossRefGoogle Scholar
  25. 25.
    B. A. Pint, Oxidation of Metals 45, 1 (1996).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • R. W. Jackson
    • 1
  • J. P. Leonard
    • 1
  • L. Niewolak
    • 2
  • W. J. Quadakkers
    • 2
  • R. Murray
    • 3
  • S. Romani
    • 3
  • G. J. Tatlock
    • 3
  • F. S. Pettit
    • 1
  • G. H. Meier
    • 1
  1. 1.Department of Mechanical Engineering and Materials ScienceUniversity of PittsburghPittsburghUSA
  2. 2.Forschungszentrum Jülich, IEF-2JülichGermany
  3. 3.Centre for Materials and Structures, School of EngineeringUniversity of LiverpoolLiverpoolUK

Personalised recommendations