Advertisement

Oxidation of Metals

, 76:419 | Cite as

The Improvement of Oxidation Resistance of a Re-Based Diffusion Barrier/Ni–Al Coating on the Single-Crystal Ni-Based TMS-82+ Superalloy

  • Y. WuEmail author
  • Y. M. Wang
  • G. M. Song
  • X. W. Li
Original Paper

Abstract

Oxidation behavior of a Re-based diffusion barrier/Ni–Al coated single-crystal (SC) Ni-based TMS-82+ superalloy was studied to compare with those of the base and Ni–Al coated superalloys under cyclic air at 1150 °C for 200 h. The base superalloy showed a negative mass gain due to extensive oxide spallation, and the Ni–Al coated superalloy without the diffusion barrier started to spall slightly after about 90 h. The oxidation resistance of the Ni–Al coated superalloy with the Re-based diffusion barrier was greatly improved due to the formation of a dense α-Al2O3 layer in the scale. The Re-based alloy was an effective diffusion barrier layer against inward diffusion of Al and outward diffusion of alloying elements in the alloy substrate due to the reduced thickness of interdiffusion zone with small amount of detrimental precipitates and higher content of Al in the Ni–Al coating that supplied enough Al for formation of the α-Al2O3 layer.

Keywords

Single-crystal Ni-based superalloy Diffusion barrier Coating Oxidation Microstructure Electron probe microanalysis (EPMA) 

Notes

Acknowledgements

This work was financially supported by The Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, China (No. DF2009-01), and Innovation Program of Shanghai Municipal Education Commission, China (No. 10ZZ126). This work described in this paper was also partly supported by the Program for New Century Excellent Talents (NCET-07-0162) in University, Ministry of Education, P.R. China, and by the Fundamental Research Funds for the Central Universities of China under Grant No. N090505001. Sincere thanks also go to Prof. T. Narita for useful discussion on the present work.

References

  1. 1.
    J. K. Tien and T. Caulfield, Superalloys, Supercomposites and Superceramics (Academic Press, San Diego, 1989).Google Scholar
  2. 2.
    A. Suzuki, F. Wu, H. Murakami, and H. Imai, Science and Technology of Advanced Materials 5, 555 (2004).CrossRefGoogle Scholar
  3. 3.
    T. Narita, T. Izumi, T. Nishimoto, Y. Shibata, K. Z. Thosin, and S. Hayashi, Materials Science Forum 522–523, 1 (2006).CrossRefGoogle Scholar
  4. 4.
    N. M. Yanar, G. H. Meier, and F. S. Pettit, Scripta Materialia 46, 325 (2002).CrossRefGoogle Scholar
  5. 5.
    T. Narita, M. Shoji, Y. Hisamatsu, D. Yoshida, M. Fukumoto, and S. Hayashi, Proceedings of the International Symposium on High-Temperature Corrosion and Protection, Hokkaido, Japan, 2000, pp 351.Google Scholar
  6. 6.
    Y. Wu, G. M. Song, Y. M. Wang, and T. Narita, Oxidation of Metals 74, 287 (2010).CrossRefGoogle Scholar
  7. 7.
    T. Narita, K. Z. Thosin, L. Fengqun, S. Hayashi, H. Murakami, B. Gleeson, and D. Young, Materials and Corrosion 56, 923 (2005).CrossRefGoogle Scholar
  8. 8.
    M. H. Li, X. F. Sun, J. G. Li, Z. Y. Zhang, T. Jin, H. R. Guan, and Z. Q. Hu, Oxidation of Metals 59, 591 (2003).CrossRefGoogle Scholar
  9. 9.
    M. H. Li, X. F. Sun, T. Jin, H. R. Guan, and Z. Q. Hu, Oxidation of Metals 60, 195 (2003).CrossRefGoogle Scholar
  10. 10.
    P. Kuppusami and H. Murakami, Surface and Coatings Technology 186, 377 (2004).CrossRefGoogle Scholar
  11. 11.
    N. Czech, F. Schmitz, and W. Stamm, Surface and Coatings Technology 68/69, 17 (1994).CrossRefGoogle Scholar
  12. 12.
    M. Reid, M. J. Pomeroy, and J. S. Robinson, Journal of Materials Processing Technology 153–154, 660 (2004).CrossRefGoogle Scholar
  13. 13.
    C. M. F. Rae, M. S. Hook, and R. C. Reed, Materials Science and Engineering A 396, 231 (2005).CrossRefGoogle Scholar
  14. 14.
    T. Izumi, T. Nishimoto, and T. Narita, Intermetallics 13, 727 (2005).CrossRefGoogle Scholar
  15. 15.
    Y. Wu and T. Narita, Materials and Corrosion 60, 781 (2009).CrossRefGoogle Scholar
  16. 16.
    C. T. Liu, X. F. Sun, H. R. Guan, and Z. Q. Hu, Surface and Coatings Technology 194, 111 (2005).CrossRefGoogle Scholar
  17. 17.
    W. Beele, N. Czech, W. J. Quadakkers, and W. Stamm, Surface and Coatings Technology 94–95, 41 (1997).CrossRefGoogle Scholar
  18. 18.
    Y. H. Zhang, D. M. Knowles, and P. J. Withers, Surface and Coatings Technology 107, 76 (1998).CrossRefGoogle Scholar
  19. 19.
    C. T. Liu, X. F. Sun, H. R. Guan, and Z. Q. Hu, Surface and Coatings Technology 197, 39 (2005).CrossRefGoogle Scholar
  20. 20.
    J. Angenete and K. Stiller, Materials Science and Engineering A 316, 182 (2001).CrossRefGoogle Scholar
  21. 21.
    J. Angenete, K. Stiller, and V. Langer, Oxidation of Metals 60, 47 (2003).CrossRefGoogle Scholar
  22. 22.
    J. Angenete and K. Stiller, Oxidation of Metals 60, 83 (2003).CrossRefGoogle Scholar
  23. 23.
    Z. H. Xu, L. M. He, R. Mu, X. H. Zhong, and X. Q. Cao, Vacuum 82, 1251 (2008).CrossRefGoogle Scholar
  24. 24.
    F. Q. Lang and T. Narita, Intermetallics 15, 599 (2007).CrossRefGoogle Scholar
  25. 25.
    C. Z. Xu, S. M. Jiang, Z. B. Bao, J. Gong, and C. Sun, Corrosion Science 51, 1467 (2009).CrossRefGoogle Scholar
  26. 26.
    J. A. Haynes, Y. Zhang, K. M. Cooley, L. Walker, K. S. Reeves, and B. A. Pint, Surface and Coatings Technology 188–189, 153 (2004).CrossRefGoogle Scholar
  27. 27.
    Z. H. Xu, R. D. Mu, L. M. He, and X. Q. Cao, Journal of Alloys and Compounds 466, 471 (2008).CrossRefGoogle Scholar
  28. 28.
    J. Müller and D. Neuschütz, Vacuum 71, 247 (2003).CrossRefGoogle Scholar
  29. 29.
    J. E. Schilbe, Surface and Coatings Technology 133–134, 35 (2000).CrossRefGoogle Scholar
  30. 30.
    H. F. Li, S. F. Tao, Z. H. Zhou, L. D. Sun, A. Hesnawi, and S. K. Gong, Surface and Coatings Technology 201, 6589 (2007).CrossRefGoogle Scholar
  31. 31.
    Y. Q. Wang and G. Sayre, Surface and Coatings Technology 203, 2186 (2009).CrossRefGoogle Scholar
  32. 32.
    K. Tukagoshi, Y. Kawata, A. Muyama, J. Masada, S. Uchida, I. Okada, and E. Ito, Mitsubishi Heavy Industries Technical Review 42, 3 (2005).Google Scholar
  33. 33.
    C. S. Giggins and F. S. Pettit, Journal of the Electrochemical Society 118, 1782 (1971).CrossRefGoogle Scholar
  34. 34.
    F. S. Pettit, Transactions of the Metallurgical Society of AIME 239, 1296 (1967).Google Scholar
  35. 35.
    F. Wu, H. Murakami, and A. Suzuki, Surface and Coatings Technology 168, 62 (2003).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringShanghai Institute of TechnologyShanghaiPeople’s Republic of China
  2. 2.Advanced Technology & Materials Co., Ltd.China Iron & Steel Research Institute GroupBeijingPeople’s Republic of China
  3. 3.Research Group of Interface Control Engineering, Graduate School of EngineeringHokkaido UniversitySapporoJapan
  4. 4.Department of Materials Science and EngineeringDelft University of TechnologyDelftThe Netherlands
  5. 5.Institute of Materials Physics and Chemistry, College of SciencesNortheastern UniversityShenyangPeople’s Republic of China

Personalised recommendations