Oxidation of Metals

, 76:247 | Cite as

Modelling High Temperature Oxidation in Iron–Chromium Systems: Combined Kinetic and Thermodynamic Calculation of the Long-Term Behaviour and Experimental Verification

  • M. Auinger
  • R. Naraparaju
  • H.-J. Christ
  • M. Rohwerder
Original Paper


The oxidation of two industrial steels with different chromium content (9 and 12 wt%), oxidised for up to 120 h at 750 °C in air has been investigated experimentally and by means of two-dimensional theoretical methods. The numerical model approach, which we call Applied Simulations of Thermodynamic Reactions and Interphase Diffusion (ASTRID), links the thermodynamic library ChemApp (GTT-Technologies, Germany) to the numerical programme COMSOL (COMSOL Inc., USA). This allows convenient implementations of complex geometries and to probe the oxidation behaviour in “real-life” microstructures under given conditions. Satisfying agreements with experimental findings for the total oxidation depth and local oxide composition have been obtained. Enhancements in the computing speed, as compared to the initial programme InCorr, enable a better resolution of the spatial phase distribution and allow the consideration of different diffusion coefficients corresponding to the newly formed (oxide) phases within the same calculation time.


High-temperature oxidation Chromium steels Thermodynamic modelling Diffusion High-diffusivity paths 



The authors M. Auinger and M. Rohwerder gratefully acknowledge the funding by the Christian Doppler Forschungsgesellschaft and the voestalpine Stahl GmbH as part of the project “Diffusion and Segregation Mechanisms during Production of High Strength Steel Sheet”.


  1. 1.
    D. Young, High Temperature Oxidation and Corrosion of Metals, 1st edn. (Elsevier, Oxford, 2008).Google Scholar
  2. 2.
    P. Kofstad, High Temperature Oxidation of Metals (John Wiley & Sons, New York, 1966).Google Scholar
  3. 3.
    W. J. Quadakkers, J. Żurek, and M. Hänsel, Journal of Metals 61, 44 (2009).Google Scholar
  4. 4.
    V. B. Trindade, U. Krupp, and H. J. Christ, Journal of Materials Engineering and Performance 17, 915 (2008).CrossRefGoogle Scholar
  5. 5.
    I. Parezanović and M. Spiegel, Surface Engineering 20, 285 (2004).CrossRefGoogle Scholar
  6. 6.
    S. Burk, B. Gorr, V. B. Trindade, and H. J. Christ, Oxidation of Metals 73, 163 (2010).CrossRefGoogle Scholar
  7. 7.
    A. N. Hansson, J. H. Hattel, K. V. Dahl, and M. A. J. Somers, Modelling and Simulation in Materials Science and Engineering 17, 035009 (2009).CrossRefGoogle Scholar
  8. 8.
    K. Bongartz, W. J. Quadakkers, R. Schulten, and H. Nickel, Metallurgical Transactions A 20, 1021 (1989).CrossRefGoogle Scholar
  9. 9.
    C. Gugenberger, R. Spatschek, and K. Kassner, Physical Review E 78, 016703 (2008).CrossRefGoogle Scholar
  10. 10.
    U. Krupp and H. J. Christ, Journal of Phase Equilibria and Diffusion 26, 487 (2005).Google Scholar
  11. 11.
    J. O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman, CALPHAD 26, 273 (2002).CrossRefGoogle Scholar
  12. 12.
    I. Kaur, Y. Mishin, and W. Gust, Fundamentals of Grain and Interphase Boundary Diffusion, 3rd edn. (John Wiley & Sons LTD, New York, 1995).Google Scholar
  13. 13.
    H. Mehrer, Landolt Börnstein—Numerical Data and Functional Relationships in Science and Technology: Group III, Vol. 26 (Springer, Berlin, 1990).Google Scholar
  14. 14.
    S. Yamaguchi and M. Someno, Transactions of the Japan Institute of Metals 23, 259 (1982).Google Scholar
  15. 15.
    A. G. Crouch and J. Robertson, Acta Metallurgica et Materialia 38, 2567 (1990).CrossRefGoogle Scholar
  16. 16.
    W. C. Hagel, Journal of the American Ceramic Society 48, 70 (1965).CrossRefGoogle Scholar
  17. 17.
    L. Himmel, R. T. Mehl, and C. E. Birchenall, Journal of Metals 5, 827 (1953).Google Scholar
  18. 18.
    W. C. Hagel and A. U. Seybolt, Journal of the Electrochemical Society 108, 1146 (1961).CrossRefGoogle Scholar
  19. 19.
    A. C. S. Sabioni, A. M. Huntz, F. Millot, and C. Monty, Philosophical Magazine A 66, 351 (1992).CrossRefGoogle Scholar
  20. 20.
    K. Kuroda, P. A. Labun, G. Welsch, and T. E. Mitchell, Oxidation of Metals 19, 117 (1983).CrossRefGoogle Scholar
  21. 21.
    M. Fukumoto, S. Maeda, S. Hayashi, and T. Narita, Oxidation of Metals 55, 401 (2001).CrossRefGoogle Scholar
  22. 22.
    G. R. Wallwork and A. Z. Hed, Oxidation of Metals 3, 171 (1971).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • M. Auinger
    • 1
  • R. Naraparaju
    • 2
  • H.-J. Christ
    • 2
  • M. Rohwerder
    • 1
  1. 1.Max-Planck-Institut für Eisenforschung GmbHDüsseldorfGermany
  2. 2.Institut für WerkstofftechnikUniversität SiegenSiegenGermany

Personalised recommendations