Oxidation of Metals

, Volume 74, Issue 5–6, pp 319–340 | Cite as

Effect of Alloy Composition and Exposure Conditions on the Selective Oxidation Behavior of Ferritic Fe–Cr and Fe–Cr–X Alloys

  • Gerald H. Meier
  • Keeyoung JungEmail author
  • Nan Mu
  • Nazik M. Yanar
  • Frederick S. Pettit
  • J. Pirón Abellán
  • Tomasz Olszewski
  • L. Nieto Hierro
  • Willem J. Quadakkers
  • Gordon R. Holcomb
Original Paper


Selective oxidation behavior of ferritic martensitic Fe–Cr base alloys, exposed in various atmospheres containing combinations of O2, CO2, and H2O, were studied at various temperatures relevant to oxy-fuel combustion. This paper begins with a discussion of the required Cr content to form a continuous external chromia scale on a simple binary Fe–Cr alloy exposed in oxygen or air based on experiments and calculations using the classic Wagner model. Then, the effects of the exposure environment and Cr content on the selective oxidation of Fe–Cr alloys are evaluated. Finally, the effects produced by alloying additions of Si, commonly present in various groups of commercially available ferritic steels, are described. The discussion compares the oxide scale formation on simple binary and ternary Fe–Cr base model alloys with that on several commercially available ferritic steels.


Oxy-fuel combustion Fe–Cr alloys Ferritic steels Chromia Water vapor Hydrogen Carbon dioxide 



This work at UPitt was performed in support of the National Energy Technology Laboratory under RDS contract DE-AC26-04NT41817. The work at FZJ was supported by the German Ministry for Economics.


  1. 1.
    E. Essuman, G. H. Meier, J. Żurek, M. Hänsel, L. Singheiser, and W. J. Quadakkers, Scripta Materialia 57, 845 (2007).CrossRefGoogle Scholar
  2. 2.
    J. Pirón Abellán, T. Olszewski, H. J. Penkalla, G. H. Meier, L. Singheiser, and W. J. Quadakkers, Materials at High Temperatures 26, 63 (2009).CrossRefGoogle Scholar
  3. 3.
    W. J. Quadakkers, A. Elschner, W. Speier, and H. Nickel, Applied Surface Science 52, 171 (1991).CrossRefGoogle Scholar
  4. 4.
    C. Wagner, Journal of the Electrochemical Society 99, 369 (1956).CrossRefGoogle Scholar
  5. 5.
    R. A. Rapp, Acta Metallurgica 9, 730 (1961).CrossRefGoogle Scholar
  6. 6.
    F. Gesmundo and F. Viani, Oxidation of Metals 25, 269 (1986).CrossRefGoogle Scholar
  7. 7.
    C. Wagner, Zeitschrift für Elektrochemie 63, 772 (1959).Google Scholar
  8. 8.
    J. H. Swisher and E. T. Turkdogan, Transactions of the Metallurgical Society AIME 239, 426 (1967).Google Scholar
  9. 9.
    E. Fromm and E. Gebhardt, Gase und Kohlenstoff in Metallen (Springer Verlag, Berlin, 1976).Google Scholar
  10. 10.
    D. P. Whittle, G. C. Wood, D. J. Evans, and D. B. Scully, Acta Metallurgica 15, 1747 (1967).CrossRefGoogle Scholar
  11. 11.
    C. S. Giggins and F. S. Pettit, Oxidation of Metals 14, 363 (1980).CrossRefGoogle Scholar
  12. 12.
    C. T. Fujii and R. A. Meussner, Journal of the Electrochemical Society 114, 435 (1967).CrossRefGoogle Scholar
  13. 13.
    J. Pirón Abellán, T. Olszewski, G. H. Meier, L. Singheiser, and W. J. Quadakkers, International Journal of Materials Research 101, 287 (2010).Google Scholar
  14. 14.
    A. Rahmel and J. Tobolski, Corrosion Science 5, 333 (1965).CrossRefGoogle Scholar
  15. 15.
    C. T. Fujii and R. A. Meussner, Journal of the Electrochemical Society 111, 1215 (1964).CrossRefGoogle Scholar
  16. 16.
    L. Tomlinson and N. J. Cory, Corrosion Science 29, 939 (1989).CrossRefGoogle Scholar
  17. 17.
    M. H. B. Ani, T. Kodama, M. Ueda, K. Kawamura, and T. Maruyama, Materials Transactions 50, 256 (2009).CrossRefGoogle Scholar
  18. 18.
    M. Michalik, M. Hänsel, J. Żurek, L. Singheiser, and W. J. Quadakkers, Materials at High Temperatures 22, 213 (2005).CrossRefGoogle Scholar
  19. 19.
    S. Henry, J. Mougin, Y. Wouters, J.-P. Petit, and A. Galerie, Materials at High Temperatures 17, 231 (2000).CrossRefGoogle Scholar
  20. 20.
    N. K. Othman, J. Zhang, and D. J. Young, Oxidation of Metals 73, 337 (2010).CrossRefGoogle Scholar
  21. 21.
    J. Żurek, L. Niewolak, and W. J. Quadakkers, Unpublished Results, Forschungszentrum Jülich, FRG (2010).Google Scholar
  22. 22.
    G. R. Holcomb, Oxidation of Metals 69, 163 (2008).CrossRefGoogle Scholar
  23. 23.
    I. G. Wright and R. B. Dooley, International Materials Reviews 55, 129 (2010).CrossRefGoogle Scholar
  24. 24.
    W.J. Quadakkers, Unpublished Results, Forschungszentrum Jülich, FRG (2010).Google Scholar
  25. 25.
    A. M. Huntz, V. Bague, G. Beauple, C. Haut, C. Severac, P. Lecour, X. Longaygue, and F. Ropital, Applied Surface Science 207, 255 (2003).CrossRefADSGoogle Scholar
  26. 26.
    B. Li and B. Gleeson, Oxidation of Metals 65, 101 (2006).CrossRefGoogle Scholar
  27. 27.
    A. Kumar and D. L. Douglass, Oxidation of Metals 10, 1 (1976).CrossRefGoogle Scholar
  28. 28.
    S. N. Basu and G. J. Yurek, Oxidation of Metals 36, 281 (1991).CrossRefGoogle Scholar
  29. 29.
    J. F. Radavich, Corrosion 15, 613t (1959).Google Scholar
  30. 30.
    F. H. Stott, G. J. Gabriel, F. I. Wei, and G. C. Wood, Materials and Corrosion 38, 521 (1987).CrossRefGoogle Scholar
  31. 31.
    V. Lepingle, G. Louis, D. Allué, B. Lefebvre, and B. Vandenberghe, Corrosion Science 50, 1011 (2008).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Gerald H. Meier
    • 1
    • 2
  • Keeyoung Jung
    • 1
    • 2
    Email author
  • Nan Mu
    • 1
    • 2
  • Nazik M. Yanar
    • 1
    • 2
  • Frederick S. Pettit
    • 1
    • 2
  • J. Pirón Abellán
    • 3
  • Tomasz Olszewski
    • 4
  • L. Nieto Hierro
    • 4
  • Willem J. Quadakkers
    • 4
  • Gordon R. Holcomb
    • 5
  1. 1.National Energy Technology LaboratoryPittsburghUSA
  2. 2.University of PittsburghPittsburghUSA
  3. 3.Salzgittermannesmann Forschung GmbHDuisburgGermany
  4. 4.Forschungszentrum Jülich, IEF-2JülichGermany
  5. 5.National Energy Technology LaboratoryAlbanyUSA

Personalised recommendations