Advertisement

Oxidation of Metals

, Volume 73, Issue 1–2, pp 163–181 | Cite as

Effect of Zr Addition on the High-Temperature Oxidation Behaviour of Mo–Si–B Alloys

  • S. BurkEmail author
  • B. Gorr
  • V. B. Trindade
  • H.-J. Christ
Original Paper

Abstract

Mo–Si–B alloys are promising candidates for structural high-temperature applications due to their excellent high-temperature mechanical properties along with high melting temperatures and oxidation resistance. After an initial period with high weight loss rates as a consequence of the volatilization of Mo-oxide, a protective borosilica (glass) layer develops on the alloy surface and steady-state oxidation is achieved. Aiming at improved mechanical properties of Mo–Si–B alloys which exhibit a continuous Mo solid solution matrix as a consequence of a powder metallurgical production route, small amounts of Zr were added. The presence of oxygen in the alloy leads to the formation of thermodynamically very stable Zr-oxide precipitates in the bulk alloy causing an enhancement of its mechanical properties. It was observed that the addition of Zr (distributed in the alloy matrix) also has significant influence on the oxidation behaviour of Mo–Si–B alloys by reducing the period for the formation of the protective and stable silica scale. Furthermore, the weight loss due to vaporization of Mo-oxides is consequently reduced. Besides this beneficial effect, Zr is harmful for the oxidation resistance at temperatures beyond 1,200 °C. This is mainly due to the increased oxygen transport through defects in the silica scale.

Keywords

Mo–Si–B alloys High-temperature oxidation Borosilica Zr effect 

Notes

Acknowledgements

This study has been supported by Deutsche Forschungsgemeinschaft in the framework of the DFG research group “Beyond Ni-Base Superalloys”.

References

  1. 1.
    N. Birks and G. H. Meier, Introduction to High Temperature Oxidation of Metals (E. Arnolds Ltd., London, 1983).Google Scholar
  2. 2.
    A. K. Vasudevan and J. J. Petrovic, Materials Science and Engineering A155, 1 (1992).Google Scholar
  3. 3.
    M. K. Meyer, A. J. Thom, and M. Akinc, Intermetallics 7, 153 (1999).CrossRefGoogle Scholar
  4. 4.
    D. M. Berczik, U.S. Patent no. 5,595,616 (United Technologies Corp., East Hartford, 1997).Google Scholar
  5. 5.
    D.M. Berczik, U.S. Patent no. 5,693,616 (United Technologies Corp., East Hartford, 1997).Google Scholar
  6. 6.
    C. A. Nunes, R. Sakidja, and J. H. Perepezko, in Structural Intermetallics 1997, eds. M. V. Nathal, R. Darolia, C. T. Liu, P. L. Martin, D. B. Miracle, R. Wagner, and M. Yamaguchi (TMS, Warrendale, PA, 1997), p. 831.Google Scholar
  7. 7.
    V. Supatarawanich, D. R. Johnson, and C. T. Liu, Materials Science and Engineering A344, 328 (2003).Google Scholar
  8. 8.
    E. Fitzer, Ceramic Transactions, The American Ceramic Society 10, 19 (1989).Google Scholar
  9. 9.
    J. S. Park, Z. Dong, S. Kim, and J. H. Perepezko, Journal of Applied Physics 87, 3683 (2000).CrossRefADSGoogle Scholar
  10. 10.
    J. H. Perepezko, R. Sakidja, and S. Kim, Mat. Res. Soc. Symp. Proc., Vol. 646 (Materials Research Society, Warrendale, PA, 2001), p. N4.5.1–10.Google Scholar
  11. 11.
    S. Ochiai, Intermetallics 14, 1351 (2006).CrossRefGoogle Scholar
  12. 12.
    S. Paswan, R. Mitra, and S. K. Roy, Intermetallics 15, 1217 (2007).CrossRefGoogle Scholar
  13. 13.
    S. C. Wang and C. P. Chou, Journal of Materials Processing Technology 197, 116 (2008).CrossRefGoogle Scholar
  14. 14.
    M. Johnsson, Zeitschrift für Metallkunde 85, 786 (1994).Google Scholar
  15. 15.
    F. A. Fasoyinu, M. Sahoo, and R. G. Davies, Grain refinement of aluminum alloy 356.0 with scandium, zirconium, and a combination of titanium and boron, Light Metals and Metal Matrix Composites, Annual Conference of Metallurgists of CIM (2000).Google Scholar
  16. 16.
    D. P. Whittle and J. Stringer, Philosophical Transactions of the Royal Society London A295, 309 (1980).ADSGoogle Scholar
  17. 17.
    B. A. Pint, Journal of the American Ceramic Society 86, 686 (2003).CrossRefGoogle Scholar
  18. 18.
    T. J. Nijdam and W. G. Sloof, Acta Materialia 55, 5980 (2007).CrossRefGoogle Scholar
  19. 19.
    M. Krüger, S. Franz, H. Saage, M. Heilmaier, J. H. Schneibel, P. Jéhanno, M. Böning, and H. Kestler, Intermetallics 16, 933 (2008).CrossRefGoogle Scholar
  20. 20.
    O. Kubaschewski and B. E. Hopkins, Oxidation of Metals and Alloys, 2nd edn. (Butterworths, London, 1967).Google Scholar
  21. 21.
    T. A. Parthasarathy, R. A. Rapp, M. Opeka, and R. J. Kerans, Acta Materialia 55, 5999 (2007).CrossRefGoogle Scholar
  22. 22.
    F. Monteverde and A. Bellosi, Journal of the Electrochemical Society 150, B552 (2003).CrossRefGoogle Scholar
  23. 23.
    C. E. Curtis and H. G. Sowman, Journal of the American Ceramic Society 36, 190 (1953).CrossRefGoogle Scholar
  24. 24.
    A. Bertoluzza, et al., Journal of Raman Spectroscopy 19, 297 (1988).CrossRefADSGoogle Scholar
  25. 25.
    P. Barberis, T. Merle-Méjean, and P. Quintard, Journal of Nuclear Materials 246, 232 (1997).CrossRefADSGoogle Scholar
  26. 26.
    M. Zhang, E. K. H. Salje, I. Farnan, A. Graeme-Barber, P. Daniel, R. C. Ewing, A. M. Clark, and H. Leroux, Journal of Physics: Condensed Matter 12, 1915 (2000).CrossRefADSGoogle Scholar
  27. 27.
    H. Saage, M. Krüger, D. Sturm, M. Heilmaier, J. H. Schneibel, E. George, L. Heatherly, Ch. Somsen, G. Eggeler, and Y. Yang, Acta Materialia 57, 13 (2009).CrossRefGoogle Scholar
  28. 28.
    N. P. Bansal and R. H. Doremus, Handbook of Glass Properties, (Academic Press, Orlando, 1986).Google Scholar
  29. 29.
    J. J. Shyu and Y. C. Chen, Journal of Materials Research 10, 2592 (1995).CrossRefADSGoogle Scholar
  30. 30.
    D. J. Poulton and W. W. Smeltzer, Journal of the Electrochemical Society: Solid State Science 117, 378 (1970).Google Scholar
  31. 31.
    B. Oberländer, P. Kofstad, and I. Kvernes, Materialwissenschaft und Werkstofftechnik 19, 190 (1988).CrossRefGoogle Scholar
  32. 32.
    F. A. Kröger, Journal of the American Ceramic Society 49, 215 (1966).CrossRefGoogle Scholar
  33. 33.
    D. L. Douglass and C. Wagner, Journal of the Electrochemical Society: Solid State Science 113, 671 (1966).Google Scholar
  34. 34.
    A. C. Fox and T. W. Clyne, Surface and Coatings Technology 184, 311 (2004).CrossRefGoogle Scholar
  35. 35.
    T. K. Gupta, J. H. Bechtold, R. C. Kuznicki, L. H. Cadoff, and B. R. Rossing, Journal of Materials Science 12, 2421 (1977).CrossRefADSGoogle Scholar
  36. 36.
    C. G. Cofer and J. Economy, Carbon 33, 389 (1995).CrossRefGoogle Scholar
  37. 37.
    P. Kofstad, High-Temperature Oxidation of Metals, (Wiley, New York, 1967).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • S. Burk
    • 1
    Email author
  • B. Gorr
    • 1
  • V. B. Trindade
    • 1
  • H.-J. Christ
    • 1
  1. 1.Institut für WerkstofftechnikUniversität SiegenSiegenGermany

Personalised recommendations