Advertisement

Oxidation of Metals

, Volume 73, Issue 1–2, pp 43–64 | Cite as

High-Temperature Oxidation of Fe3Al and Fe3Al–Zr Intermetallics

  • S. ChevalierEmail author
  • P. Juzon
  • G. Borchardt
  • A. Galerie
  • K. Przybylski
  • J. P. Larpin
Original Paper

Abstract

The oxidation behavior of Fe3Al and Fe3Al–Zr intermetallic compounds was tested in synthetic air in the temperature range 900–1200 °C. The addition of Zr showed a significant effect on the high-temperature oxidation behavior. The total weight gain after 100 h oxidation of Fe3Al at 1200 °C was around three times more than that for Fe3Al–Zr materials. Zr-containing intermetallics exhibited abnormal kinetics between 900 and 1100 °C, due to the presence and transformation of transient alumina into stable α-Al2O3. Zr-doped Fe3Al oxidation behavior under cyclic tests at 1100 °C was improved by delaying the breakaway oxidation to 80 cycles, in comparison to 5 cycles on the undoped Fe3Al alloys. The oxidation improvements could be related to the segregation of Zr at alumina grain boundaries and to the presence of Zr oxide second-phase particles at the metal–oxide interface and in the external part of the alumina scale. The change of oxidation mechanisms, observed using oxygen–isotope experiments followed by secondary-ion mass spectrometry, was ascribed to Zr segregation at alumina grain boundaries.

Keywords

Intermetallics Iron aluminide High-temperature oxidation Zr segregation Oxidation mechanisms 

Notes

Acknowledgments

The authors would like to sincerely acknowledge Dr. A. Crisci (LEPMI, Grenoble INP, France) for the photoluminescence experiments, Dr. O. Heintz (ICB, University of Bourgogne, Dijon, France) for the SIMS profiles and Dr. Morgiel (Polish Academy of Sciences, Krakow, Poland) for the TEM observations.

References

  1. 1.
    J. H. Westbrook, Intermetallic Compounds (John Wiley & Sons Inc, New York, 1960).Google Scholar
  2. 2.
    P. F. Tortorelli and K. Natesan, Materials Science Engineering A 258, 115 (1998).CrossRefGoogle Scholar
  3. 3.
    K. Natesan, Materials Science Engineering A 258, 126 (1998).CrossRefGoogle Scholar
  4. 4.
    C. G. McKamey, J. H. DeVan, P. F. Tortorelli, and V. K. Sikka, Journal of Materials Research 6, 1779 (1991).CrossRefADSGoogle Scholar
  5. 5.
    W. E. Boggs, Journal of the Electrochemical Society 118, 906 (1971).CrossRefGoogle Scholar
  6. 6.
    J. L. Smialek, J. Doychak, and D. J. Gaydosh, Oxidation of Metals 34, 259 (1990).CrossRefGoogle Scholar
  7. 7.
    I. Rommerskirchen, B. Eltester, and H. J. Grabke, Materials Corrosion 47, 646 (1996).CrossRefGoogle Scholar
  8. 8.
    C. H. Xu, W. Gao, and H. Gong, Intermetallics 8, 769 (2000).CrossRefGoogle Scholar
  9. 9.
    C. H. Xu, W. Gao, and D. Li, Corrosion Science 43, 671 (2001).CrossRefGoogle Scholar
  10. 10.
    P. Tomaszewicz, in High Temperature Corrosion, ed. R. A. Rapp (NACE, Houston, USA, 1983), p. 258.Google Scholar
  11. 11.
    W. J. Quadakkers and M. J. Bennett, Materials Science Technology 10, 126 (1994).Google Scholar
  12. 12.
    B. A. Pint, L. R. Walker, and I. G. Wright, Materials at High Temperature 21, 175 (2004).CrossRefGoogle Scholar
  13. 13.
    W. J. Quadakkers and M. J. Bennet, Materials Sciences and Technology 10, 126 (1994).Google Scholar
  14. 14.
    R. Klumpes, The influence of chromium on the oxidation of b-NiAl at 1000°C. in Oxidation of Intermetallics, ed. H. J. Grabke (Wiley VCH, 1998), p. 99.Google Scholar
  15. 15.
    G. C. Wood, Oxidation of Metals 2, 11 (1970).CrossRefGoogle Scholar
  16. 16.
    P. F. Tortorelli and J. H. DeVan, Materials Sciences Engineering A 154, 1065 (1992).Google Scholar
  17. 17.
    J. H. DeVan and P. F. Tortorelli, Materials at High Temperature 11, 30 (1993).Google Scholar
  18. 18.
    S. C. Deevi and V. K. Sikka, Intermetallics 4, 357 (1996).CrossRefGoogle Scholar
  19. 19.
    Z. Liu and W. Gao, Oxidation of Metals 54, 189 (2000).CrossRefGoogle Scholar
  20. 20.
    Z. G. Zhang, F. Gesmundo, P. Y. Hou, and Y. Niu, Corrosion Science 48, 741 (2006).CrossRefGoogle Scholar
  21. 21.
    D. P. Whittle and J. Stringer, Philosophical Transactions of the Royal Society of London 295, 309 (1980).ADSGoogle Scholar
  22. 22.
    F. H. Stott, G. C. Wood, and J. Stringer, Oxidation of Metals 44, 113 (1995).CrossRefGoogle Scholar
  23. 23.
    B. A. Pint, Oxidation of Metals 45, 1 (1996).CrossRefGoogle Scholar
  24. 24.
    W. J. Quadakkers and L. Singheiser, Materials Science Forum 369–372, 77 (2001).CrossRefGoogle Scholar
  25. 25.
    J. Jedlinski, Solid State Ionics 101–103, 1033 (1997).CrossRefGoogle Scholar
  26. 26.
    R. Cueff, H. Buscail, E. Caudron, C. Issartel, and R. Riffard, Oxidation of Metals 58, 439 (2002).CrossRefGoogle Scholar
  27. 27.
    J. K. Tien and F. S. Pettit, Metallurgical Transaction 3, 1587 (1972).CrossRefADSGoogle Scholar
  28. 28.
    R. Prescott and M. J. Graham, Oxidation of Metals 38, 233 (1992).CrossRefGoogle Scholar
  29. 29.
    J. Jedlinski, Oxidation of Metals 39, 55 (1993).CrossRefGoogle Scholar
  30. 30.
    K. Y. Kim, Oxidation of Metals 41, 179 (1994).CrossRefGoogle Scholar
  31. 31.
    S. Taniguchi, Materials and Corrosion 48, 1 (1997).CrossRefGoogle Scholar
  32. 32.
    S. Chevalier, G. Strehl, H. Buscail, G. Borchardt, and J. P. Larpin, Materials and Corrosion 55, 352 (2004).CrossRefGoogle Scholar
  33. 33.
    S. Chevalier, A. P. D. Tankeu, H. Buscail, C. Issartel, G. Borchardt, and J. P. Larpin, Materials and Corrosion 55, 610 (2004).CrossRefGoogle Scholar
  34. 34.
    S. Chevalier, G. Strehl, H. Buscail, C. Issartel, G. Borchardt, and J. P. Larpin, Materials and Corrosion 57, 476 (2006).CrossRefGoogle Scholar
  35. 35.
    C. Houngninou, S. Chevalier, and J. P. Larpin, Oxidation of Metals 65, 409 (2006).CrossRefGoogle Scholar
  36. 36.
    I. G. Wright, B. A. Pint, and P. F. Tortorelli, Oxidation of Metals 55, 333 (2001).CrossRefGoogle Scholar
  37. 37.
    B. A. Pint, P. F. Tortorelli, and I. G. Wright, Materials and Corrosion 47, 663 (1996).CrossRefGoogle Scholar
  38. 38.
    B. A. Pint, P. F. Tortorelli, and I. G. Wright, Materials at High Temperature 16, 1 (1999).CrossRefGoogle Scholar
  39. 39.
    B. A. Pint, K. L. More, P. F. Tortorelli, W. D. Porter, and I. G. Wright, Materials Science Forum 369–372, 411 (2001).CrossRefGoogle Scholar
  40. 40.
    K. Przybylski, A. J. Garratt-Reed, B. A. Pint, E. P. Katz, and G. J. Yurek, Journal of the Electrochemical Society 134, 3207 (1987).CrossRefGoogle Scholar
  41. 41.
    K. P. R. Reddy, J. L. Smialek, and A. R. Cooper, Oxidation of Metals 17, 429 (1982).CrossRefGoogle Scholar
  42. 42.
    B. A. Pint, J. R. Martin, and L. W. Hobbs, Oxidation of Metals 39, 167 (1993).CrossRefGoogle Scholar
  43. 43.
    S. Chevalier, C. Nivot, and J. P. Larpin, Oxidation of Metals 61, 195 (2004).CrossRefGoogle Scholar
  44. 44.
    W. J. Quadakkers, H. Holzbrecher, K. G. Briefs, and H. Beske, Oxidation of Metals 32, 67 (1989).CrossRefGoogle Scholar
  45. 45.
    W. J. Quadakkers, W. Speier, H. Holzbrecher, and H. Nickel, SIMS investigations of the transport phenomena in chromia and alumina scales on ODS alloys. in Proc. Conference on Microscopy of Oxidation, Cambridge, UK, March 1990 (1991), p. 149.Google Scholar
  46. 46.
    C. Mennicke, E. Schumman, M. Ruhle, K. J. Hussey, G. I. Sproule, and M. J. Graham, Oxidation of Metals 49, 455 (1998).CrossRefGoogle Scholar
  47. 47.
    P. Nanni, C. T. H. Stoddart, and E. D. Hondros, Journal of Materials Chemistry 1, 297 (1973).Google Scholar
  48. 48.
    S. Chevalier, B. Lesage, C. Legros, G. Borchardt, G. Strehl, and M. Kilo, Defect and Diffusion Forum 237–240, 899 (2005).CrossRefGoogle Scholar
  49. 49.
    S. Chevalier, Traitement de surface et nouveaux matériaux: quelles solutions pour lutter contre la dégradation des matériaux métalliques à haute température?, (Les Editions Universitaires de Dijon, Dijon, 2007), p. 61.Google Scholar
  50. 50.
    S. Chevalier, G. Bonnet, G. Borchardt, J. C. Colson, and J. P. Larpin, Materials Science Forum 369–372, 327 (2001).CrossRefGoogle Scholar
  51. 51.
    S. Chevalier, K. Przybylski, G. Borchardt, and J. P. Larpin, Materials Science Forum 461–464, 53 (2004).CrossRefGoogle Scholar
  52. 52.
    N. Babu, R. Balasubramaniam, and A. Ghosh, Corrosion Science 43, 2239 (2001).CrossRefGoogle Scholar
  53. 53.
    D. B. Lee, G. Y. Kim, and J. G. Kim, Materials Science and Engineering A 339, 109 (2003).CrossRefGoogle Scholar
  54. 54.
    Z. G. Yang and P. Y. Hou, Materials Science and Engineering A 391, 1 (2005).CrossRefGoogle Scholar
  55. 55.
    S. Chevalier, A. Galerie, O. Heintz, R. Chassagnon, and A. Crisci, Materials Science Forum 595–598, 915 (2008).CrossRefGoogle Scholar
  56. 56.
    J. Fedotova, G. Bonnet, F. Pedraza, J. Balmain, S. Dubois, V. Gauthier, M. F. Denanot, N. OuabadiI, A. Letsko, A. Ilvuschenko, and A. Akimov, Corrosion Science 50, 1693 (2008).CrossRefGoogle Scholar
  57. 57.
    D. Monceau and B. Pieraggi, Oxidation of Metals 50, 477 (1998).CrossRefGoogle Scholar
  58. 58.
    G. C. Wood, Werkstoffe und Korrosion 22, 491 (1971).CrossRefGoogle Scholar
  59. 59.
    F. A. Golightly, G. C. Wood, and F. H. Stott, Oxidation of Metals 14, 217 (1980).CrossRefGoogle Scholar
  60. 60.
    T. A. Ramanarayanan, R. Ayer, R. Petkovic-Luton, and D. P. Leta, Oxidation of Metals 29, 445 (1988).CrossRefGoogle Scholar
  61. 61.
    W. C. Hagel, Corrosion 21, 316 (1965).Google Scholar
  62. 62.
    G. C. Rybicki and J. L. Smialek, Oxidation of Metals 31, 275 (1989).CrossRefGoogle Scholar
  63. 63.
    M. W. Brumm and H. J. Grabke, Corrosion Science 33, 1677 (1992).CrossRefGoogle Scholar
  64. 64.
    H. J. Grabke, Materials Science Forum 251–254, 149 (1997).CrossRefGoogle Scholar
  65. 65.
    E. Andrieu, A. Germidis, and R. Molins, Materials Science Forum 251–254, 357 (1997).CrossRefGoogle Scholar
  66. 66.
    T. V. Mani, P. K. Pallai, A. D. Damodaran, and K. G. K. Warrier, Materials Letters 19, 237 (1994).CrossRefGoogle Scholar
  67. 67.
    S. J. Wilson and J. C. D. McConnell, Journal of Solid State Chemistry 34, 315 (1980).CrossRefADSGoogle Scholar
  68. 68.
    C. Chan, C. Huvier, and J. F. Dinhut, Intermetallics 9, 817 (2001).CrossRefGoogle Scholar
  69. 69.
    F. Lang, Z. Yu, S. Gedevanishvili, S. C. Deevi, and T. Narita, Intermetallics 11, 697 (2003).CrossRefGoogle Scholar
  70. 70.
    C.-H. Xu, W. Gao, and Y.-D. He, Scripta Materialia 42, 975 (2000).CrossRefGoogle Scholar
  71. 71.
    B. A. Pint, J. R. Regina, K. Pr¨ssner, L. D. Chitwood, K. B. Alexander, and P. F. Tortorelli, Intermetallics 9, 735 (2001).CrossRefGoogle Scholar
  72. 72.
    B. A. Pint, J. R. Martin, and L. W. Hobbs, Solid State Ionics 78, 99 (1995).CrossRefGoogle Scholar
  73. 73.
    B. A. Pint, A. J. Garratt-Reed, and L. W. Hobbs, Materials at High Temperature 13, 3 (1995).Google Scholar
  74. 74.
    S. Chevalier, in Developments in High-Temperature Corrosion and Protection of Materials, eds. G. Wei and L. Zhengwei, Chap. 10 (Woodhead Publishing in Materials, Cambridge, England, 2008), p. 290.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • S. Chevalier
    • 1
    Email author
  • P. Juzon
    • 1
    • 2
  • G. Borchardt
    • 3
  • A. Galerie
    • 4
  • K. Przybylski
    • 2
  • J. P. Larpin
    • 1
  1. 1.Institut Carnot Bourgogne, UMR 5209 CNRSUniversité de BourgogneDijon CedexFrance
  2. 2.Faculty of Materials Science and CeramicsAGH University of Science and TechnologyCracowPoland
  3. 3.Institut für Metallurgie, Technische Universität ClausthalClausthal-ZellerfeldGermany
  4. 4.SIMaP, Grenoble INPSaint-Martin d’Hères CedexFrance

Personalised recommendations