Oxidation of Metals

, Volume 71, Issue 3–4, pp 219–235 | Cite as

Oxidation of Minor Elements from an Iron–Nickel–Chromium–Cobalt–Phosphorus Alloy in 17.3% CO2–H2 Gas Mixtures at 700–1000 °C

  • Dante S. LaurettaEmail author
  • Britney E. Schmidt
Original Paper


Fe–Ni–Cr–Co–P alloys were exposed to 17.3% CO2–H2 gas mixtures to investigate the oxidation of minor elements in metallic alloys in the early solar system. Reaction temperatures varied between 700 and 1000 °C. Gas-phase equilibrium was attained at 800, 900, and 1000 °C, yielding H2–H2O–CO–CO2 gas mixtures. Experiments at 700 and 750 °C did not achieve gas-phase equilibrium and were performed in H2–CO2 gas mixtures. Reaction timescales varied from 1 to 742 h. The experimental samples were characterized using optical microscopy, electron microprobe analysis, wavelength-dispersive-spectroscopy X-ray elemental mapping, and X-ray diffraction. In all experiments Cr experiences internal oxidation to produce inclusions of chromite (FeCr2O4) and eskolaite (Cr2O3) and surface layers of Cr-bearing magnetite [(Fe,Cr)3O4]. At 900 and 1000 °C, P is lost from the alloy via diffusion and sublimation from the metal surface. Analysis of P zoning profiles in the remnant metal cores allows for the determination of the P diffusion coefficient in the bulk metal, which is constant, and the internally oxidized layer, which is shown to vary linearly with distance from the metal surface. At 800 and 900 °C, P oxidizes to form a surface layer of graftonite [Fe3(PO4)2] while at 700 and 750 °C P forms inclusions of the phosphide-mineral schreibersite [(Fe,Ni)3P].


Oxidation Fe–Ni–Cr–Co–P alloy Eskolaite (Cr2O3Chromite (FeCr2O4Magnetite (Fe3O4Schreibersite ([Fe,Ni]3P) Graftonite (Fe3[PO4]2Diffusion 


  1. 1.
    D. S. Lauretta, D. T. Kremser, and B. Fegley, Icarus 122, 288 (1996).CrossRefADSGoogle Scholar
  2. 2.
    D. S. Lauretta, K. Lodders, and B. Fegley, Science 277, 358 (1997).PubMedCrossRefADSGoogle Scholar
  3. 3.
    D. S. Lauretta, K. Lodders, and B. Fegley, Meteoritics & Planetary Science 33, 821 (1998).ADSGoogle Scholar
  4. 4.
    B. Fegley Jr., Space Science Reviews 92, 177 (2000).CrossRefADSGoogle Scholar
  5. 5.
    B. Zanda, D. M. Bourot, C. Perron, and R. H. Hewins, Science 265, 1846 (1994).PubMedCrossRefADSGoogle Scholar
  6. 6.
    D. S. Lauretta, P. R. Buseck, and T. J. Zega, Geochimica et Cosmichimica Acta 65, 1337 (2001).CrossRefADSGoogle Scholar
  7. 7.
    D. S. Lauretta and P. R. Buseck, Meteoritics & Planetary Science 38, 59 (2003).ADSCrossRefGoogle Scholar
  8. 8.
    Y. Hong and B. Fegley Jr., Meteoritics and Planetary Science 33, 1101 (1998).ADSCrossRefGoogle Scholar
  9. 9.
    D. S. Lauretta, Oxidation of Metals 64, 1 (2005).CrossRefGoogle Scholar
  10. 10.
    J. Megusar and G. H. Meier, Metallurgical Transactions A 7A, 1133 (1976).CrossRefADSGoogle Scholar
  11. 11.
    J. Crank, The Mathematics of Diffusion (Oxford University Press, New York, 1975).Google Scholar
  12. 12.
    A. D. Le Claire and G. Neumann, in Numerical Data and Functional Relationship in Science and Technology. Landolt-Bornstein, New Series, Group III, ed. H. Mehrer, Vol. 26 (Springer Verlag, Berlin, 1990).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Lunar and Planetary LaboratoryUniversity of ArizonaTucsonUSA
  2. 2.Department of Earth and Space SciencesUniversity of CaliforniaLos AngelesUSA

Personalised recommendations