Oxidation of Metals

, 70:163 | Cite as

Paralinear Oxidation of Chromium in O2 + H2O Environment at 600–700 °C

  • Bagas Pujilaksono
  • Torbjörn Jonsson
  • Mats Halvarsson
  • Itai Panas
  • Jan-Erik Svensson
  • Lars-Gunnar Johansson
Original Paper


The oxidation of chromium in dry O2 and in O2 + 10%H2O at 600 and 700 °C is studied. Scale morphology is investigated by several methods, including scanning electron microscopy (SEM) of cross sections prepared by focussed ion beam milling (FIB). In O2 + H2O at 600 and 700 °C, chromium forms a duplex scale consisting of an inner barrier oxide and a discontinuous outer oxide made up of blade-shaped crystals. Thermogravimetric (TG) measurements show that water vapour influences chromium oxidation by causing vaporization of the protective oxide, resulting in paralinear oxidation kinetics. An extension of the original treatment by Tedmon is deduced, which allows for the determination of the evaporation rate constant k s and the parabolic oxidation rate constant k d from TG data acquired during short exposures. The results show that k d is the same in dry O2 and in O2 + 10%H2O. Equivalently, the transport properties of chromia are the same in the two environments. The equilibrium constant of CrO2(OH)2 formation from chromia is reported. The activation enthalpy of the vaporization reaction is determined.


Oxidation of chromium Water vapour effect Chromia vaporization Paralinear oxidation 



Swedish Foundation for Strategic Research (SSF) and High Temperature Corrosion Centre (HTC), Chalmers University of Technology, Göteborg, Sweden are acknowledged for financial support. A grant from the Knut and Alice Wallenberg Foundation for acquiring the FEG SEM instrument is gratefully acknowledged.


  1. 1.
    H. Asteman, J. E. Svensson, L. G. Johansson, and M. Norell, Oxidation of Metals 52, 95 (1999).CrossRefGoogle Scholar
  2. 2.
    H. Asteman, J. E. Svensson, M. Norell, and L. G. Johansson, Oxidation of Metals 54, 11 (2000).CrossRefGoogle Scholar
  3. 3.
    A. S. Khanna, Introduction to High Temperature Oxidation and Corrosion (ASM International, USA, 2002).Google Scholar
  4. 4.
    P. Kofstad, High Temperature Corrosion (Elsevier Applied Science, London, 1988).Google Scholar
  5. 5.
    N. Otsuka, Y. Nishiyama, and T. Kudo, Oxidation of Metals 62, 121 (2004).CrossRefGoogle Scholar
  6. 6.
    K. Segerdahl, J. E. Svensson, and L. G. Johansson, Materials and Corrosion-Werkstoffe Und Korrosion 53, 479 (2002).CrossRefGoogle Scholar
  7. 7.
    H. Asteman, J. E. Svensson, and L. G. Johansson, Oxidation of Metals 57, 193 (2002).CrossRefGoogle Scholar
  8. 8.
    I. Panas, J. E. Svensson, H. Asteman, T. J. R. Johnson, and L. G. Johansson, Chemical Physics Letters 383, 549 (2004).CrossRefGoogle Scholar
  9. 9.
    B. B. Ebbinghaus, Combustion and Flame 93, 119 (1993).CrossRefGoogle Scholar
  10. 10.
    E. J. Opila, D. L. Myers, N. S. Jacobson, I. M. B. Nielsen, D. F. Johnson, J. K. Olminsky, and M. D. Allendorf, Journal of Physical Chemistry A 111, 1971 (2007).CrossRefGoogle Scholar
  11. 11.
    M. Hansel, W. J. Quadakkers, and D. J. Young, Oxidation of Metals 59, 285 (2003).CrossRefGoogle Scholar
  12. 12.
    B. Tveten, G. Hultquist, and D. Wallinder, Oxidation of Metals 55, 279 (2001).CrossRefGoogle Scholar
  13. 13.
    C. S. Tedmon, Journal of the Electrochemical Society 113, 766 (1966).CrossRefGoogle Scholar
  14. 14.
    E. J. Opila and R. E. Hann, Journal of the American Ceramic Society 80, 197 (1997).CrossRefGoogle Scholar
  15. 15.
    U. Wendt and G. Nolze, Praktische Metallographie-Practical Metallography 44, 236 (2007).Google Scholar
  16. 16.
    E. A. Gulbransen and K. F. Andrew, Journal of the Electrochemical Society 99, 402 (1952).CrossRefGoogle Scholar
  17. 17.
    D. J. Young and M. Cohen, Journal of the Electrochemical Society 124, 775 (1977).CrossRefGoogle Scholar
  18. 18.
    C. Gindorf, L. Singheiser, and K. Hilpert, Journal of Physics and Chemistry of Solids 66, 384 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Bagas Pujilaksono
    • 1
  • Torbjörn Jonsson
    • 2
  • Mats Halvarsson
    • 2
  • Itai Panas
    • 1
  • Jan-Erik Svensson
    • 1
  • Lars-Gunnar Johansson
    • 1
  1. 1.Environmental Inorganic Chemistry, Department of Chemical and Biological EngineeringChalmers University of TechnologyGoteborgSweden
  2. 2.Microscopy and Microanalysis Group, Department of Applied PhysicsChalmers University of TechnologyGoteborgSweden

Personalised recommendations