Oxidation of Metals

, Volume 70, Issue 3–4, pp 149–162 | Cite as

Kinetics of Hydrogen Absorption and Release in Zirconium Alloys During Steam Oxidation

  • M. Grosse
  • M. Steinbrueck
  • E. Lehmann
  • P. Vontobel
Original Paper

Abstract

The kinetics of hydrogen absorption during steam oxidation in Zr–Sn and Zr–Nb alloys in the temperature range of 1,000–1,400 °C was investigated by neutron radiography. Hydrogen uptake can be subdivided into two steps: an initial phase and a state of equilibrium. The initial phase is controlled by the kinetics of hydrogen diffusion through the growing oxide layer. In the state of equilibrium, transport kinetics does not determine the hydrogen content of the material. An equilibrium is established between the hydrogen content of the gas environment and the metal phases. The temperature dependence of hydrogen absorption is Arrhenius-like at temperatures between 1,100 and 1,300 °C.

Keywords

Steam oxidation Zirconium alloys Hydrogen absorption 

References

  1. 1.
    L. Sepold, P. Hofmann, W. Leiling, A. Miassoedov, D. Piel, L. Schmidt, and M. Steinbrück, Nuclear Engineering and Design 204, 205 (2001).CrossRefGoogle Scholar
  2. 2.
    M. Steinbrück, Proceedings of the 13th International QUENCH Workshop (Forschungszentrum Karlsruhe, November 20–22, 2007), ISBN 978-3-923704-63-7.Google Scholar
  3. 3.
    L. K. Sepold, A. Miassoedov, G. Schanz, U. Stegmaier, M. Steinbrueck, and J. Stuckert, Nuclear Technology 147, 202 (2004).Google Scholar
  4. 4.
    C. Wagner, Berichte d. Bunsen-Gesellschaft f. Physikalische Chemie 72, 778 (1968).Google Scholar
  5. 5.
    K. Park and D. R. Olander, Journal of the American Ceramic Society 74, 72 (1991).CrossRefGoogle Scholar
  6. 6.
    K.-N. Choo, S.-I. Puyn, and Y.-S. Kim, Journal of Nuclear Materials 226, 9 (1995).CrossRefGoogle Scholar
  7. 7.
    J. H. Kim, M. H. Lee, B. K. Choi, and Y. H. Jeong, Journal of Nuclear Materials 235, 67 (2005).Google Scholar
  8. 8.
    J. Böhmert, M. Dietrich, and J. Linek, Nuclear Engineering and Design 147, 53 (1993).CrossRefGoogle Scholar
  9. 9.
    J. Freska, G. Konczos, L. Maroti, and L. Matus, Oxidation and hydration of Zr 1% Nb alloys by steam, KFKI-Report-1995-17/G (1995).Google Scholar
  10. 10.
    M. S. Veshchunov and A. V. Berdyshev, Journal of Nuclear Materials 255, 250 (1998).CrossRefGoogle Scholar
  11. 11.
    M. Grosse, E. Lehmann, P. Vontobel, and M. Steinbrueck, Nuclear Instruments & Methods in Physics Research A 566, 739 (2006).CrossRefGoogle Scholar
  12. 12.
    G. Kühne, G. Frei, E. Lehmann, and P. Vontobel, Nuclear Instruments & Methods in Physics Research Section A 542, 264 (2005).CrossRefGoogle Scholar
  13. 13.
    G. Schanz, B. Adroguer, and A. Volchek, Nuclear Engineering and Design 232, 75 (2004).CrossRefGoogle Scholar
  14. 14.
    M. Steinbrück, Journal of Nuclear Materials 334, 58 (2004).CrossRefGoogle Scholar
  15. 15.
    M. Steinbrück and H. Kleykamp, unpublished.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • M. Grosse
    • 1
  • M. Steinbrueck
    • 1
  • E. Lehmann
    • 2
  • P. Vontobel
    • 2
  1. 1.Forschungszentrum Karlsruhe, Institut für Materialforschung IEggenstein-LeopoldshafenGermany
  2. 2.Paul Scherrer Institut Villigen, Abteilung SpallationsneutronenquelleVilligen PSISwitzerland

Personalised recommendations