Oxidation of Metals

, Volume 69, Issue 3–4, pp 233–247

Effect of Al on High-Temperature Oxidation of Cr–W Alloys

Original Paper

Abstract

The effect of Al on the high temperature oxidation behavior of Cr–10 wt.%W alloy was investigated using a cyclical oxidation test at 1,000 °C in dry air. First, Al was added into the Cr–W alloy as an alloying element up to 8 weight percent. Although alloying with Al reduced the spalling, it did not eliminate it. Secondly, Al was applied to the surface using an aluminizing process. Forming an Al–Cr layer on the Cr–W alloy reduced oxidation rate significantly and eliminated spalling completely.

Keywords

Chromium–tungsten alloys High-temperature oxidation Aluminizing 

References

  1. 1.
    T. E. Tietz and J. W. Wilson, Behavior and Properties of Refractory Metals (Stanford University Press, Stanford, CA, 1965), p. 29.Google Scholar
  2. 2.
    O. N. Dogan, unpublished research, 2005.Google Scholar
  3. 3.
    H. L. Wain, F. Henderson, and S. T. M. Johnstone, Journal of Institute of Metals 83, 133 (1954–1955).Google Scholar
  4. 4.
    H. L. Wain, F. Henderson, S. T. M. Johnstone, and N. Louat, Journal of Institute of Metals 86, 281 (1957–1958).Google Scholar
  5. 5.
    Y. Matsumoto, M. Morinaga, and M. Furui, Scripta Materialia 38(2), 321 (1998).CrossRefGoogle Scholar
  6. 6.
    Y. Matsumoto, J. Fukumori, M. Morinaga, M. Furui, T. Nambu, and T. Sakaki, Scripta Materialia 34(11), 1685 (1996).CrossRefGoogle Scholar
  7. 7.
    Y. Matsumoto, K. Oki, M. Tanaka, F. Fujigami, Y. Harada, and M. Morinaga, Materials Science and Engineering A 385, 133 (2004).Google Scholar
  8. 8.
    Y. F. Gu, Y. Ro, and H. Harada, Metallurgical and Materials Transactions A 35A, 3329 (2004).CrossRefGoogle Scholar
  9. 9.
    A. V. Sameljuk, A. D. Vasilev, and S. A. Firstov, International Journal of Refractory Metals & Hard Materials 14, 249 (1996).CrossRefGoogle Scholar
  10. 10.
    C. L. Briant, K. S. Kumar, N. Rosenberg, and H. Tomioka, International Journal of Refractory Metals & Hard Materials 18, 9 (2000).CrossRefGoogle Scholar
  11. 11.
    Y. Harada and M. Ohmori, Journal of Materials Processing Technology 153–154, 93 (2004).CrossRefGoogle Scholar
  12. 12.
    Y. Ro, Y. Koizumi, S. Nakazawa, T. Kobayashi, E. Bannai, and H. Harada, Scripta Materialia 46, 331 (2002).CrossRefGoogle Scholar
  13. 13.
    N. Birks and G. H. Meier, Introduction to High Temperature Oxidation of Metals (Edward Arnold Ltd., London, 1983), p. 80.Google Scholar
  14. 14.
    W. C. Hagel, Transactions of the ASM 56, 583 (1963).Google Scholar
  15. 15.
    A. U. Seybolt and D. H. Hamam, Transactions of TMS of AIME 230, 1294 (1964).Google Scholar
  16. 16.
    M. P. Brady, P. F. Tortorelli, and L. R. Walker, Oxidation of Metals 58 (3–4), 297 (2002).CrossRefGoogle Scholar
  17. 17.
    M. P. Brady and P. Sachenko, Scripta Materialia 52, 809 (2005).CrossRefGoogle Scholar
  18. 18.
    D. Caplan, A. Harvey, and M. Cohen, Corrosion Science 3, 161 (1963).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.DOE National Energy Technology LaboratoryAlbanyUSA

Personalised recommendations