Oxidation of Metals

, Volume 69, Issue 3–4, pp 211–231 | Cite as

Internal Oxidation–Nitridation of Ferritic Fe(Al) Alloys in Air

  • B. A. Pint
  • M. J. Dwyer
  • R. M. Deacon
Original Paper


Exposure of undoped Fe(Al) and Fe(Al)+Cr ferritic alloys in laboratory air at 900–1,000 °C resulted in significant internal attack after 5,000 h, including oxides and underlying nitrides. In the most severely attacked alloys, kinetics based on mass gain and maximum penetration depth were linear; also, the deepest penetrations were a significant fraction of the specimen thickness, and were thickness-dependent. Little internal attack was observed at 700–800 °C where these compositions may be used as coatings. The extent of internal attack did not decrease with increasing Al or Cr content which may indicate that rather than classical internal oxidation this attack is related to the permeation of N through a defective external scale. No internal attack was observed in alloys doped with Y, Zr, Hf or Ti where the substrate-alumina scale interface was flatter.


Ferritic Fe(Al) Internal oxidation Nitridation Kinetics 



The author would like to thank G. Garner, J. Moser, J. Vought, H. Longmire and L. Walker at ORNL for assistance with the experimental work; J. Regina and A. Marder from Lehigh Univ. for the initial alloy specimens; D. J. Young from the Univ. of New South Wales, Australia, for several discussions on these results; and I. G. Wright, M. P. Brady and P. F. Tortorelli for comments on the manuscript. MJD worked at ORNL as part of the SULI program and RMD as part of the HERE program, both administered by Oak Ridge Associated Universities. The research was sponsored by the U.S. Department of Energy, Fossil Energy Advanced Research Materials Program and work at the SHaRE User Facility by the Division of Scientific User Facilities, under contract DE-AC05-00OR22725 with UT-Battelle, LLC.


  1. 1.
    C.-H. Xu, W. Gao, and Y.-D. He, Scripta Materialia 42, 975 (2000).CrossRefGoogle Scholar
  2. 2.
    B. A. Pint, J. R. Regina, K. Prüßner, L. D. Chitwood, K. B. Alexander, and P. F. Tortorelli, Intermetallics 9, 735 (2001).CrossRefGoogle Scholar
  3. 3.
    S. W. Banovic, J. N. Du Pont, and A. R. Marder, Materials at High Temperature 16, 195 (1999).CrossRefGoogle Scholar
  4. 4.
    S. W. Banovic, J. N. Du Pont, and A. R. Marder, Metallurgical and Materials Transactions 31A, 1805 (2000).CrossRefGoogle Scholar
  5. 5.
    J. R. Regina, J. N. DuPont, and A. R. Marder, Oxidation of Metals 61, 69 (2004).CrossRefGoogle Scholar
  6. 6.
    Y. Zhang, B. A. Pint, K. M. Cooley, and J. A. Haynes, Surface and Coatings Technology (2008, in press).Google Scholar
  7. 7.
    Y. Zhang, B. A. Pint, G. W. Garner, K. M. Cooley, and J. A. Haynes, Surface and Coatings Technology 188–189, 35 (2004).CrossRefGoogle Scholar
  8. 8.
    B. A. Pint, W. D. Porter, and I. G. Wright, Materials Science Forum (2008, in press).Google Scholar
  9. 9.
    B. A. Pint, P. F. Tortorelli, and I. G. Wright, Oxidation of Metals 58, 73 (2002).CrossRefGoogle Scholar
  10. 10.
    T. Lyman, ed., Metals Handbook (ASM International, Metals Park, OH 1973), Vol. 8, p. 39.Google Scholar
  11. 11.
    B. A. Pint, J. Leibowitz, and J. H. DeVan, Oxidation of Metals 51, 181 (1999).CrossRefGoogle Scholar
  12. 12.
    B. A. Pint and I. G. Wright, Oxidation of Metals 63, 193 (2005).CrossRefGoogle Scholar
  13. 13.
    F. H. Stott, G. C. Wood, and J. Stringer, Oxidation of Metals 44, 113 (1995).CrossRefGoogle Scholar
  14. 14.
    S. Hayashi and T. Narita, Journal of the Japan Institute of Metals 63, 1311 (1999).Google Scholar
  15. 15.
    D. L. Douglass, Oxidation of Metals 44, 81 (1995).CrossRefGoogle Scholar
  16. 16.
    D. J. Young and S. Watson, Oxidation of Metals 44, 239 (1995).CrossRefGoogle Scholar
  17. 17.
    A. Agüero, R. Muelas, A. Pastor, and S. Osgerby, Surface and Coatings Technology 200, 1219 (2005).CrossRefGoogle Scholar
  18. 18.
    Y. Zhang, A. P. Liu, and B. A. Pint, Materials and Corrosion 58, 751 (2007).CrossRefGoogle Scholar
  19. 19.
    P. Fox and G. J. Tatlock, Materials Science and Technology 4, 439 (1988).Google Scholar
  20. 20.
    D. L. Douglass, JOM 43(11), 74 (1991).Google Scholar
  21. 21.
    M. J. Bennett, J. R. Nicholls, G. Borchardt, and G. Strehl, Materials at High Temperature 19, 117 (2002).Google Scholar
  22. 22.
    M. J. Bennett, R. Newton, and J. R. Nicholls, Materials at High Temperature 20, 347 (2003).Google Scholar
  23. 23.
    S. Han and D. J. Young, Oxidation of Metals 55, 223 (2001).CrossRefGoogle Scholar
  24. 24.
    C. Wagner, Z. Elektrochem. 63, 772 (1950).Google Scholar
  25. 25.
    B. A. Pint and I. G. Wright, Materials Science Forum 461–464, 799 (2004).Google Scholar
  26. 26.
    N. Belen, P. Tomaszewicz, and D. J. Young, Oxidation of Metals 22, 227 (1984).CrossRefGoogle Scholar
  27. 27.
    D. P. Whittle, Y. Shida, G. C. Wood, F. H. Stott, and B. D. Bastow, Philosophical Magazine A 46, 931 (1982).CrossRefGoogle Scholar
  28. 28.
    B. A. Pint, Oxidation of Metals 45, 1 (1996).CrossRefGoogle Scholar
  29. 29.
    G. H. Meier, F. S. Pettit, and J. L. Smialek, Werkstoffe und Korrosion 46, 232 (1995).CrossRefGoogle Scholar
  30. 30.
    B. A. Pint and K. B. Alexander, Journal of the Electrochemical Society 145, 1819 (1998).CrossRefGoogle Scholar
  31. 31.
    L. E. Kindlimann and G. S. Ansell, Metallurgical Transactions 1, 163 (1970).Google Scholar
  32. 32.
    I. C. Chen and D. L. Douglass, Oxidation of Metals 34, 473 (1990).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Materials Science and Technology DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations