Oxidation of Metals

, Volume 69, Issue 3–4, pp 163–180 | Cite as

Calculation of Reactive-evaporation Rates of Chromia

  • Gordon R. Holcomb
Original Paper


A methodology is developed to calculate Cr-evaporation rates from Cr2O3 with a flat planar geometry. Variables include temperature, total pressure, gas velocity, and gas composition. The methodology was applied to solid-oxide, fuel-cell conditions for metallic interconnects and to advanced-steam turbines conditions. The high velocities and pressures of the advanced steam turbine led to evaporation predictions as high as 5.18 × 10−8 kg/m2/s of CrO2(OH)2(g) at 760 °C and 34.5 MPa. This is equivalent to 0.080 mm per year of solid Cr loss. Chromium evaporation is expected to be an important oxidation mechanism with the types of nickel-base alloys proposed for use above 650 °C in advanced-steam boilers and turbines. It is shown that laboratory experiments, with much lower steam velocities and usually much lower total pressure than found in advanced steam turbines, would best reproduce chromium-evaporation behavior with atmospheres that approach either O2 + H2O or air + H2O with 57% H2O.


Oxidation Modeling Nickel alloys Stainless steels Chromia volatilization 


  1. 1.
    K. Hilpert, D. Das, M. Miller, D. H. Peck, and R. Weiß, Journal of the Electrochemical Society 143, 3642 (1996).CrossRefGoogle Scholar
  2. 2.
    S. P. Jiang, J. P. Zhang, and J. Föger, Journal of the Electrochemical Society 147, 3195 (2000).CrossRefGoogle Scholar
  3. 3.
    S. P. Jiang, J. P. Zhang, L. Apateanu, and K. Föger, Journal of the Electrochemical Society 147, 4013 (2000).CrossRefGoogle Scholar
  4. 4.
    F. Chen, E. Sun, J. Yamanis, J. Hawkes, J. Smeggil, S. Warrier, and J.-W. Kim. in Fuel Cells and Energy Storage Systems: Materials, Processing, Manufacturing and Power Management Technologies, Proceedings of Materials Science and Technology (MS&T) 2006: Materials and Systems (2006), Vol. I, p. 303.Google Scholar
  5. 5.
    H. Asteman, J.-E. Svensson, L.-G. Johansson, and M. Norell, Oxidation of Metals 52, 95 (1999).CrossRefGoogle Scholar
  6. 6.
    H. Asteman, J.-E. Svensson, M. Norell, and L.-G. Johansson, Oxidation of Metals 54, 11 (2000).CrossRefGoogle Scholar
  7. 7.
    D. R. Gaskell, An Introduction to Transport Phenomena in Materials Engineering (Macmillan Publishing, New York, NY, 1992), p. 78 (chapter 2) and p. 569 (chapter 11).Google Scholar
  8. 8.
    G. H. Geiger and D. R. Poirier, Transport Phenomena in Metallurgy (Addison-Wesley Publishing, Reading, MA, 1973), p. 7 (chapter 1), p. 463 (chapter 13) and p. 529 (chapter 15).Google Scholar
  9. 9.
    W. A. Tucker and L. H. Nelken, in Handbook of Chemical Property Estimation Methods. W. J. Lyman, W. F. Reehl, and D. H. Rosenblatt, eds. (American Chemical Society, Washington DC, 1990), p. 17.9.Google Scholar
  10. 10.
    E. N. Fuller, P. D. Schettler, and J. C. Giddings, Industrial and Engineering Chemistry 58, 19 (1966).Google Scholar
  11. 11.
    S. Veliah, K.-H. Xiang, R. Pandey, J. M. Recio, and J. M. Newsam, Journal of Physical Chemistry B 102, 1126 (1988).CrossRefGoogle Scholar
  12. 12.
    R. B. Bird, W. E. Stewart, and E. D. Lightfoot, Transport Phenomena (John Wiley & Sons, New York, NY, 1960), p. 504 (chapter 16).Google Scholar
  13. 13.
    J. C. Slattery and R. B. Bird, American Institute of Chemical Engineers Journal 4, 137 (1958).Google Scholar
  14. 14.
    S. C. Stultz and J. B. Kitto, eds., in Steam, 40th edn. (Babcock & Wilcox, Barberton, OH, 1992), p. 3.8, 42.Google Scholar
  15. 15.
    C. R. Wilke, Journal of Chemical Physics 18, 517 (1950).CrossRefGoogle Scholar
  16. 16.
    E. J. Opila, Materials Science Forum 461–464, 765 (2004).Google Scholar
  17. 17.
    Glusko Thermocenter of the Russian Academy of Sciences—Izhorskaya 13/19, 127412 (IVTAN Association, Moscow Russia, 1994).Google Scholar
  18. 18.
    B. B. Ebbinghaus, Combustion and Flame 93, 119 (1993).CrossRefGoogle Scholar
  19. 19.
    V. S. Yungman, V. A. Medvedev, I. V. Veits, and G. A. Bergman. IVTANTHERMO—A Thermodynamic Database and Software System for the Computer (CRC Press and Begell House, Boca Raton FL, 1993).Google Scholar
  20. 20.
    A. Roine, HSC Chemistry 5.11 (Outokumpu Research Oy, Pori Finland, 2002).Google Scholar
  21. 21.
    C. Gindorf, K. Hilpert, and L. Singheiser, in Solid Oxide Fuel Cells (SOFC VII), Proceedings, H. Yokokawa and S. C. Singhal, eds. (Electrochemical Society, Pennington, NJ, 2001), Vol. 2001-16, p. 793.Google Scholar
  22. 22.
    G. R. Holcomb, M. Ziomek-Moroz, and D. E. Alman, in Proceedings of the 23rd Annual Pittsburgh Coal Conference (2006).Google Scholar
  23. 23.
    G. R. Holcomb and D. E. Alman, Scripta Materialia 54, 1821 (2006).CrossRefGoogle Scholar
  24. 24.
    J. Hammer, S. Laney, W. Jackson, F. Pettit, and G. Meier, in SECA Annual Workshop and Core Technology Program Peer Review (2005).Google Scholar
  25. 25.
    Z. Yang, M. S. Walker, P. Singh, J. W. Stevenson, and T. Norby, Journal of the Electrochemical Society 151, B669 (2004).CrossRefGoogle Scholar
  26. 26.
    J. W. Stevenson, Z. G. Yang, P. Singh, and G. H. Meier, in 1st International Conference on Fuel Cell Development and Deployment, Storrs (CT) (2004).Google Scholar
  27. 27.
    Y. Larring and T. Norby, Journal of the Electrochemical Society 147, 3251 (2000).CrossRefGoogle Scholar
  28. 28.
    S. C. Kung, Private Communication (The Babcock & Wilcox Company, Barberton, OH, 2007).Google Scholar
  29. 29.
    C. W. Bale, A. D. Pelton, W. T. Thompson, G. Eriksson, K. Hack, P. Chartrand, S. Decterov, J. Melançon, and S. Petersen, Factsage 5.5, Thermfact and GTT-Technologies (2007).Google Scholar
  30. 30.
    S. R. J. Saunders and L. N. McCartney, Materials Science Forum (2006), Vols. 522–523, p. 119.CrossRefGoogle Scholar
  31. 31.
    F. Masuyama, ISIJ International 41, 612 (2001).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Materials Performance DivisionNational Energy Technology LaboratoryAlbanyUSA

Personalised recommendations