Oxidation of Metals

, Volume 69, Issue 3–4, pp 143–162 | Cite as

The Effect of Water Vapor on Selective Oxidation of Fe–Cr Alloys

  • E. Essuman
  • G. H. Meier
  • J. Żurek
  • M. Hänsel
  • W. J. Quadakkers
Original Paper


Binary Fe–Cr alloys containing 10 and 20 mass% Cr were studied with respect to isothermal oxidation behavior at 900 and 1,050 °C in Ar–20%O2, Ar–7%H2O and Ar–4%H2−7%H2O. Thermogravimetric analyses in combination with analytical studies using SEM/EDX and Raman Spectroscopy revealed, that in atmospheres in which water vapor is the source of oxygen, Cr exhibits a higher tendency to become internally oxidized than in the Ar–O2 gas. Contrary to previous studies which showed the presence of water vapor to affect transport processes in the scale, the present results thus reveal that the presence of water vapor also affects the transport processes in the alloy. This mechanism is an “easy” explanation of the frequently observed effect that Fe–Cr alloys with intermediate Cr contents (e.g. 10–20%, depending on temperature) exhibit protective chromia-rich scale formation in dry gases but breakaway type Fe-rich oxides in wet gases, provided the oxygen partial pressure is sufficiently high for Fe to become oxidized.


Chromia Water vapor Hydrogen Internal oxidation 



The authors are grateful to Mr. Cosler for carrying out the TG tests, Mr. Wessel for SEM analyses, Mr. Niewolak and Mr. Piron-Abellan for their assistance in carrying out the LRS studies.


  1. 1.
    G. Hultquist, B. Tveten, and E. Hörnlund, Oxidation of Metals 54, 1 (2000).CrossRefGoogle Scholar
  2. 2.
    S. Henry, J. Mougin, Y. Wouters, J.-P. Petit, and A. Galerie, Materials at High Temperature 17, 231 (2000).Google Scholar
  3. 3.
    M. Michalik, M. Hänsel, J. Zurek, L. Singheiser, and W. J. Quadakkers, Materials at High Temperature 22, 213 (2005).Google Scholar
  4. 4.
    B. Tveten, G. Hultquist, and T. Norby, Oxidation of Metals 51, 221 (1999).CrossRefGoogle Scholar
  5. 5.
    S. Henry, A. Galerie, and L. Antoni, Materials Science Forum 369372, 353 (2001).Google Scholar
  6. 6.
    J. Żurek, D. J. Young, E. Essuman, M. Hänsel, H. J. Penkalla, L. Niewolak, and W. J. Quadakkers, Growth and adherence of chromia-based surface scales on Ni-base alloys in high- and low-pO2 gases, Materials Science and Engineering (in press). doi: 10.1016/j.msea.2007.05.035.
  7. 7.
    C. S. Tedmon, Journal of the Electrochemical Society 113, 766 (1966).CrossRefGoogle Scholar
  8. 8.
    K. Hilpert, D. Das, M. Miller, D. H. Peck, and R. Weiss, Journal of the Electrochemical Society 143, 3642 (1996).CrossRefGoogle Scholar
  9. 9.
    H. Asteman, J.-E. Svensson, M. Norell, and L.-G. Johansson, Oxidation of Metals 54, 11 (2000).CrossRefGoogle Scholar
  10. 10.
    H. Asteman, J.-E. Svensson, and L.-G. Johansson, Corrosion Science 44, 2635 (2002).CrossRefGoogle Scholar
  11. 11.
    H. Asteman, J.-E. Svensson, and L.-G. Johansson, Oxidation of Metals 57, 193 (2002).CrossRefGoogle Scholar
  12. 12.
    J. E. Segerdahl, J.-E. Svensson, and L.-G. Johansson, Materials and Corrosion 53, 247 (2002).CrossRefGoogle Scholar
  13. 13.
    J. Ehlers, D. J. Young, E. J. Smaardijk, A. K. Tyagi, H. J. Penkalla, L. Singheiser, and W. J. Quadakkers, Corrosion Science 48, 3428 (2006).CrossRefGoogle Scholar
  14. 14.
    A. Rahmel, and J. Tobolski, Corrosion Science 5, 333 (1965).CrossRefGoogle Scholar
  15. 15.
    A. Galerie, Y. Wouters, and M. Caillet, Materials Science Forum 369–372, 231 (2001).CrossRefGoogle Scholar
  16. 16.
    M. Schütze, D. Renusch, and M. Schorr, Corrosion Engineering, Science and Technology 39, 157 (2004).CrossRefGoogle Scholar
  17. 17.
    A. D. Pelton, H. Schmalzried, and J. Sticher, Journal of Physics and Chemistry of Solids 40, 1103 (1979).CrossRefGoogle Scholar
  18. 18.
    C. T. Fujii and R. A. Meussner, Journal of the Electrochemical Society 111, 1215 (1964).CrossRefGoogle Scholar
  19. 19.
    C. T. Fujii and R. A. Meussner, Journal of the Electrochemical Society 110, 1195 (1963).CrossRefGoogle Scholar
  20. 20.
    J. Żurek, M. Michalik, F. Schmitz, T.-U. Kern, L. Singheiser, and W. J. Quadakkers, Oxidation of Metals 63(5/6), 401 (2005).Google Scholar
  21. 21.
    I. G. Wright, in Metals Handbook, Vol. 13, 9th edn. (ASM, Metals Park, OH, 1987), p. 97.Google Scholar
  22. 22.
    E. Kunze, Korrosion und Korrosionsschutz (Wiley-VCH, Germany, 2001).Google Scholar
  23. 23.
    R. J. Ehlers, P. J. Ennis, L. Singheiser, W. J. Quadakkers, and T. Link, in Proceedings in European Federation of Corrosion Monograph. No. 34. M. Schütze, W. J. Quadakkers, and J. Nicholls, eds. (The Institute of Materials, London, 2001) p. 178, ISSN 1354–5116.Google Scholar
  24. 24.
    C. Wagner, Journal of the Electrochemical Society 99, 369 (1956).CrossRefGoogle Scholar
  25. 25.
    R. A. Rapp, Acta Metallurgica 9, 730 (1961).CrossRefGoogle Scholar
  26. 26.
    F. Gesmundo, and F. Viani, Oxidation of Metals 25, 269 (1986).CrossRefGoogle Scholar
  27. 27.
    C. Wagner, Zeitschrift für Elektrochemie 63, 772 (1959).Google Scholar
  28. 28.
    J. H. Swisher and E. T. Turkdogan, Transactions of the Metallurgical Society AIME 239, 426 (1967).Google Scholar
  29. 29.
    E. Fromm and E. Gebhardt, Gase und Kohlenstoff in Metallen (Springer Verlag, Berlin, 1976).Google Scholar
  30. 30.
    D. P. Whittle, G. C. Wood, D. J. Evans, and D. B. Scully, Acta Metallurgica 15, 1747 (1967).CrossRefGoogle Scholar
  31. 31.
    M. C. Maris-Sida, G. H. Meier, and F. S. Pettit, Metallurgical and Materials Transactions A 34A, 2609 (2003).CrossRefGoogle Scholar
  32. 32.
    K. Nakagawa, Y. Matsunaga, and T. Yanagisawa, Materials at High Temperature 18, 51 (2001).Google Scholar
  33. 33.
    K. Nakagawa, Y. Matsunaga, and T. Yanagisawa, Materials at High Temperature 20, 67 (2003).Google Scholar
  34. 34.
    Z. Yang, M. S. Walker, P. Singh, and J. W. Stevenson, Electrochemical Solid State Letters 6, B35 (2003).CrossRefGoogle Scholar
  35. 35.
    W. Eichenauer, H. Künzig, and A. Pebler, Zeitschrift für Metallkunde 49, 220 (1958).Google Scholar
  36. 36.
    E. Park, B. Hüning, H. J. Grabke, and M. Spiegel, Defect and Diffusion Forum 237–240, 928 (2005).Google Scholar
  37. 37.
    J. Ågren, Scripta Metallurgica 20, 1507 (1986).CrossRefGoogle Scholar
  38. 38.
    D. J. Young and B. A. Pint, Oxidation of Metals 66(3/4), 137 (2006).CrossRefGoogle Scholar
  39. 39.
    M. Schütze, M. Schorr, D. P. Renusch, and J. P. T. Vossen, Materials Research 7(1), 111 (2004).CrossRefGoogle Scholar
  40. 40.
    R. Peraldi and B. A. Pint, Oxidation of Metals 61(5/6), 463 (2004).CrossRefGoogle Scholar
  41. 41.
    M. Thiele, H. Teichmann, W. Schwarz, and W. J. Quadakkers, VGB Kraftwerkstechnik 77, 135 (1997).Google Scholar
  42. 42.
    Y. Ikeda and K. Nii, Transactions of National Research Institute for Metals 26(1), 52 (1984).Google Scholar
  43. 43.
    A. Galerie, S. Henry, Y. Wouters, M. Mermoux, J.-P. Petit, and L. Anton, Materials at High Temperatures 22, 105 (2005).Google Scholar
  44. 44.
    M. Ueda, M. Nanko, K. Kawamura, and T. Maruyama, Materials at High Temperatures 20(2), 109 (2003).Google Scholar
  45. 45.
    S. Hayashi, and T. Narita, Oxidation of Metals 58(3/4), 319 (2002).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • E. Essuman
    • 1
  • G. H. Meier
    • 2
  • J. Żurek
    • 1
  • M. Hänsel
    • 1
  • W. J. Quadakkers
    • 1
  1. 1.Forschungszentrum Jülich, IEF-2JulichGermany
  2. 2.University of PittsburghPittsburghUSA

Personalised recommendations