Oxidation of Metals

, Volume 69, Issue 3–4, pp 131–142 | Cite as

Cyclic Oxidation of P91 by Thermogravimetry and Investigation of Integrity of Scale by “Transient-Mass-Gain” Method

  • S. Rajendran PillaiEmail author
  • R. K. Dayal
Original Paper


The growth and degradation of the oxide scale on modified 9Cr–1Mo ferritic steel was studied at 1123 K using a thermogravimetric balance by employing the “transient-mass-gain method” in conjunction with the adaptation of a cyclic-oxidation procedure. The total duration of the oxidation was 1000 h. The experiment revealed that the cracking of the scale was initiated when the average thickness was 72 μm. Spallation occurred when the average thickness was 75 μm. The rate of spallation was found to be enhanced as the scale thickens and attained a higher rate after 90 μm. The rate constants for the different stages of oxidation were found to be different. The specimen was examined by SEM, EDS and XRD. The scale morphology revealed outwardly protruded growth, a uniform adherent oxide layer and a spalled region. Four oxide phases were identified; Cr2O3, Fe2O3, (FeCr)2O3 and FeCr2O4. The spall contained more (FeCr)2O3 whereas the adherent scale was more FeCr2O4.


Cyclic oxidation Scale failure P91 steel Transient-mass-gain method 



The authors wish to acknowledge the help rendered by Mrs. M. Radhika, Physical Metallurgy Section, Materials Characterization Group, in SEM and EDS analyses and Mrs. S. Kalavathy, Materials Science Division in the XRD characterization.


  1. 1.
    N. J. Simms and J. E. Oakey, Materials at High Temperatures 13(2), 75 (1995).Google Scholar
  2. 2.
    M. Schuetze, Oxidation of Metals 24(3/4), 199 (1985).CrossRefGoogle Scholar
  3. 3.
    H. E. Evans and R. C. Lobb, Corrosion Science 24(3), 209 (1984).CrossRefGoogle Scholar
  4. 4.
    S. Rajendran Pillai, P. Shankar, and H. S. Khatak, High Temperature Materials and Processes 23(3), 196 (2004).Google Scholar
  5. 5.
    S. Rajendran Pillai, Corrosion Reviews 23(4–6), 277 (2005).Google Scholar
  6. 6.
    W. J. Quadakkers and K. Bongartz, Werkstoffe und Korrosion-Materials and Corrosion 45, 232 (1994).CrossRefGoogle Scholar
  7. 7.
    R. Hales, Werkstoffe und Korrosion-Materials and Corrosion 29, 939 (1978).Google Scholar
  8. 8.
    G. C. Wood, M. G. Hobby, and B. Vaszko, Journal of the Iron and Steel Institute 202, 685 (1964).Google Scholar
  9. 9.
    C. Lille and R. F. A. Jargelius-Pettersson, Materials at High Temperatures 17(2), 287 (2000).Google Scholar
  10. 10.
    M. Schuetze, Materials Science and Technology 6, 32 (1990).Google Scholar
  11. 11.
    S. Rajendran Pillai, N. Sivai Barasi, and H. S. Khatak, Oxidation of Metals 54(3/4), 211 (2000).CrossRefGoogle Scholar
  12. 12.
    H. E. Evans, G. P. Mitchel, R. C. Lobb, and D. R. J. Owen, Proceedings of the Royal Society of London Series A 440(1908), 1 (1993).Google Scholar
  13. 13.
    T. Ohashi and T. Harada, Oxidation of Metals 46(3/4), 235 (1996).CrossRefGoogle Scholar
  14. 14.
    V. V. Belousov and B. S. Bokshstein, Oxidation of Metals 50(5/6), 389 (1998).CrossRefGoogle Scholar
  15. 15.
    F. J. Perez, F. Pedraza, M. P. Hierro, J. Balmain, and G. Bonnet, Surface and Coatings Technology 153(1), 49 (2002).CrossRefGoogle Scholar
  16. 16.
    L. Mikkelsan and S. Linderoth, Materials Science and Engineering A 361(1/2), 198 (2003).CrossRefGoogle Scholar
  17. 17.
    U. Krupp, S. Y. Chang, A. Schimke, and H.-J. Christ, in Lifetime Modelling of High Temperature Corrosion Processes. M. Schuetze, W. J. Quadakkers, and J. R. Nicholls, eds. (EFC 34, Maney Publishing, London, 2001), p. 148.Google Scholar
  18. 18.
    A. F. Smith, Corrosion Science 21(7), 517 (1981).CrossRefGoogle Scholar
  19. 19.
    S. N. Basu and G. J. Yurek, Oxidation of Metals 36(3/4), 281 (1991).CrossRefGoogle Scholar
  20. 20.
    M. Schuetze, Oxidation of Metals 44, 29 (1995).CrossRefGoogle Scholar
  21. 21.
    J. R. Nicholls and M. J. Bennett, in Cyclic Oxidation of High Temperature Materials. M. Schuetze and W. J. Quadakkers, eds. (IOM Communications Ltd., London, 1999), Vol. EFC 27, p. 437.Google Scholar
  22. 22.
    J. L. Smialek, J. A. Nesbitt, C. A. Barett, and C. E. Lowell, Report NASA/TM-2000-209769.Google Scholar
  23. 23.
    J. R. Nichols and M. J. Bennett, Materials at High Temperatures 17(3), 413 (2000).Google Scholar
  24. 24.
    D. Monceau and D. Poquillon, Oxidation of Metals 61(1/2), 143 (2004).CrossRefGoogle Scholar
  25. 25.
    J. C. Pivin, D. Delaunay, C. Roques-Carmes, A. M. Huntz, and P. Lacombe, Corrosion Science 20, 351 (1980).CrossRefGoogle Scholar
  26. 26.
    S. Y. Chang, U. Krupp, and H. J. Christ, in Cyclic Oxidation of High Temperature Materials. M. Schuetze and W. J. Quadakkers, eds. (IOM Communications Ltd., London, 1999), Vol. EFC 27, p. 63.Google Scholar
  27. 27.
    P. Vangeli and B. Ivarsson, Materials Science Forum 369–372, 785 (2001).Google Scholar
  28. 28.
    P. Vangeli, in Cyclic Oxidation of High Temperature Materials. M. Schuetze and W. J. Quadakkers, eds. (IOM Communications Ltd., London, 1999), Vol. EFC 27, p. 198.Google Scholar
  29. 29.
    A. Raffaitin, D. Monceau, E. Andrieu, and F. Crabos, Acta Materialia 54(17), 4473 (2006).CrossRefGoogle Scholar
  30. 30.
    J.-C. Salabura and D. Monceau, Materials Science Forum 461–464, 689 (2004).CrossRefGoogle Scholar
  31. 31.
    J. Herman, Journal of Less Common Metals 100, 321 (1984).CrossRefGoogle Scholar
  32. 32.
    W. L. Phillips Jr., Transactions of the American Society for Metals 57, 33 (1964).Google Scholar
  33. 33.
    D. R. Lide, CRC Handbook of Chemistry and Physics, 80th edn. (CRC Press, London, 1999–2000), p. 4.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Corrosion Science and Technology DivisionIndira Gandhi Centre for Atomic ResearchKalpakkamIndia

Personalised recommendations