Oxidation of Metals

, Volume 66, Issue 5–6, pp 295–319 | Cite as

Microstructural Investigation of Protective and Non-Protective Oxides on 11% Chromium Steel

  • F. Liu
  • J. E. Tang
  • T. Jonsson
  • S. Canovic
  • K. Segerdahl
  • J. -E. Svensson
  • M. Halvarsson

FIB, SEM and STEM/EDX were used to investigate X20 stainless-steel samples exposed to dry O2, or O2 containing 40% H2O, with a flow velocity of 0.5 cm/s or 5 cm/s, for 168 hr or 336 hr at 600°C. Thin protective Cr-rich (Cr,Fe)2O3 was maintained on the samples exposed to dry O2, even after 336 hr, and on the sample exposed to O2/H2O mixture with the low-flow velocity (0.5 cm/s) for 168 hr. The oxide scale formed in the latter environment contained less Cr, due to Cr loss through CrO2(OH)2 evaporation. Breakaway oxidation occurred on the samples exposed in high-gas-flow velocity for shorter time (168 hr) or in low-gas-flow velocity (0.5 cm/s) for longer time (336 hr). The breakaway scales featured a two-layered structure: an outward-growing oxide “island” consisting of almost pure hematite (α-Fe2O3), and an inward-growing oxide “crater” consisting of (Cr,Fe)3O4. The transition from a thin protective (Cr,Fe)2O3 scale to a non-protective thick scale on this martensitic/ferritic steel originated locally and was followed by rapid oxide growth, resulting in a thick scale that covered the whole sample surface.


stainless steel high-temperature oxidation water vapor microstructure FIB TEM EDX 



This work was carried out within the Swedish High Temperature Corrosion centre (HTC) with financial support partly provided by the Swedish National Research Council (VR).


  1. 1.
    Asteman H., Svensson J.-E., Johansson L.-G., Norell M. (1999) Oxidation of Metals 52(1/2):95–111CrossRefGoogle Scholar
  2. 2.
    Asteman H., Segerdahl K., Svensson J.-E., Johansson L.-G. (2001) Materials science forum 369–372;277–286Google Scholar
  3. 3.
    Asteman H., Svensson J.-E., Norell M., Johansson L.-G. (2000) oxidation of Metals 54 (1/2), 11–26Google Scholar
  4. 4.
    Asteman H., Svensson J.-E., Johansson L.-G. (2002) Oxidation of Metals 57(3/4):193–216CrossRefGoogle Scholar
  5. 5.
    Asteman H., Svensson J.-E., Johansson L.-G. (2002) Corrosion Science 44(11):2635–2649CrossRefGoogle Scholar
  6. 6.
    M. Halvarsson, J. E. Tang, H. Asteman, J.-E. Svensson, and L.-G. Johansson, Microstructual investigation of the breakdown of the protective oxide scale on a 304 Steel in the presence of oxygen and water vapour at 600°C. Corrosion Science, accepted for publicationGoogle Scholar
  7. 7.
    J. E. Tang, H. Asteman, J.-E. Svensson, L.-G. Johansson, and M. Halvarsson, TEM investigation of oxide scales formed on 304L steel at 600°C in oxygen with 40% water vapour. submitted to Oxidation of MetalsGoogle Scholar
  8. 8.
    J. E. Tang, F. Liu, H. Asteman, J.-E. Svensson, L.-G. Johansson, and M. Halvarsson, Investigation of FIB-thinned TEM cross-sections of oxide scales formed on type 310 steel at 600°C in water vapour-containing oxygen atmospheres. Materials at High temperatures, accepted to publishGoogle Scholar
  9. 9.
    F. Liu, J. E. Tang, H. Asteman, J.-E. Svensson, L.-G. Johansson, and M. Halvarsson, The evolution of the oxide microstructure on 310 stainless steel oxidized at 600°C in oxygen with 40% water vapor. manuscriptGoogle Scholar
  10. 10.
    K. Segerdahl, J.-E. Svensson, and L.-G. Johansson, Materials and Corrosion 53, 479–485, (2002)Google Scholar
  11. 11.
    Segerdahl K., Svensson J.-E., Johansson L.-G. (2002) Materials and Corrosion 53:247–255CrossRefGoogle Scholar
  12. 12.
    Peraldi R., Pint B. A. (2004) Oxidation of Metals 61(5/6):463–483CrossRefGoogle Scholar
  13. 13.
    Schutze M., Renusch D., Schorr M. (2004) Corrosion Engineering Science and Technology 39(2):157–166CrossRefGoogle Scholar
  14. 14.
    Yamauchi A., Kurokawa K., Takahashi H. (2003) Oxidation of Metals 59(5/6):517–527CrossRefGoogle Scholar
  15. 15.
    Hansel M., Quadakkers W. J., Young D. J. (2003) Oxidation of Metals 59(3/4):285–301CrossRefGoogle Scholar
  16. 16.
    P. J. Ennis, Y. Wouters, and W. J. Quadakkers, “Advanced Heat Resistant Steels for Power Generation, Advanced Heat Resistant Steals, IOM Communications”, Book 708, 457–467 (1999)Google Scholar
  17. 17.
    Nickel H., Wouters Y., Thiele M., Quadakkers W. J. (1998) Fresenius Journal of Alnalytical Cheimistry 361(6/7):540–544CrossRefGoogle Scholar
  18. 18.
    Shen Jiannian, Zhou Lingjiang, and Li Tiefan, Oxidation of Metals 48(3/4), 347–356 (1997)Google Scholar
  19. 19.
    Kofstad P. (1988) High-Temperature Corrosion. Elsevier Applied Science, LondonGoogle Scholar
  20. 20.
    Thiele M., Teichmann H., Schwarz W., Quadakkers W. J. (1997) VGB Kraftwerkstechnik 2:129–134Google Scholar
  21. 21.
    Holt A., Kofstad P. (1994) Solid State Ionics 69:137–143CrossRefGoogle Scholar
  22. 22.
    Hultquist G., Chuah G. K., Tan K. L. (1990) Corrosion Science 31:149–154CrossRefGoogle Scholar
  23. 23.
    Tang J. E., Halvarsson M., Asteman H., Svensson J.-E. (2001) Materials Science Forum 369–372:205–214CrossRefGoogle Scholar
  24. 24.
    Evans H. E., Donaldson A. T., Gilmour T. C. (1999) Oxidation of Metals 52(5/6):379–402CrossRefGoogle Scholar
  25. 25.
    Baer D. R. and Merz M. D. (1980) Metallurgical Transactions A 11A:1973–1980Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • F. Liu
    • 1
  • J. E. Tang
    • 1
  • T. Jonsson
    • 1
  • S. Canovic
    • 1
  • K. Segerdahl
    • 2
  • J. -E. Svensson
    • 2
  • M. Halvarsson
    • 1
  1. 1.Department of Applied PhysicsChalmers University of TechnologyGöteborgSweden
  2. 2.Department of Environmental Inorganic ChemistryChalmers University of TechnologyGöteborgSweden

Personalised recommendations