Oxidation of Metals

, Volume 62, Issue 3–4, pp 207–222 | Cite as

Oxidation Mechanism of Cu2O to CuO at 600–1050°C

  • Y. Zhu
  • K. Mimura
  • M. Isshiki
Article

Abstract

To clarify the oxidation mechanism of Cu2O to CuO, Cu2O oxidation was studied at 600–1050 °C under 1atm O2. The Cu2O specimens were prepared through completely oxidizing 99.99999 and 99.5 pure copper at 1000°C in an Ar + 1 O2 atmosphere. The oxidation kinetics of Cu2O specimens prepared from both purity levels followed the logarithmic law, not the parabolic law or the cubic law as reported in the literature. The activation energy for Cu2O oxidation is relatively high in the lower-temperature range, but becomes very small or even negative at higher temperatures. The logarithmic oxidation rate law can be explained by Davies et al.’s model related to grain-boundary diffusion in the oxide layers. The very small or negative activation energies in the higher-temperature range can be attributed to the very small thermodynamic driving force and the fast lateral growth of CuO grains related to a sintering effect. The influence of small amount of impurities is also discussed.

Oxidation CuO Cu2Oxidation rate law Grain-boundary diffusion Activation energies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    G. Valensi, Revue Metallurgie 45, 368 (1948).Google Scholar
  2. 2.
    J. Paidassi, Acta Metallurgica 6, 216 (1958).Google Scholar
  3. 3.
    J. A. Sartell and C. H. Li, American Society for Metals Transactions Quarterly 55, 158 (1962).Google Scholar
  4. 4.
    Y. Zhu, K. Mimura, and M. Isshiki, Materials Transanctions JIM 11, 2173 (2002).Google Scholar
  5. 5.
    W. McKewan and W. M. Fassell, Journal of Metals 1127 (1953).Google Scholar
  6. 6.
    J. H. Park and K. Natesan, Oxidation of Metals 39, 411 (1993).Google Scholar
  7. 7.
    K. Hauffe and P. Kofstad, Zeischrift Fur Elektrochemie 59, 399 (1955).Google Scholar
  8. 8.
    J. Meijering and M. Verheijke, Acta Metallurgica 7, 331 (1959).Google Scholar
  9. 9.
    O. Kubaschewski, Oxidation of Metals and Alloys (Academic Press, NY, 1962) 51 pp.Google Scholar
  10. 10.
    P. Kofstad, High Temperature Corrosion (Elsevier Science Publishing Co., Inc., NY, 1988) 148 pp.Google Scholar
  11. 11.
    N. Cabrera and N. F. Mott, Reports on Progress in Physics 12, 163 (1948–1949).Google Scholar
  12. 12.
    N. Cabrera, in Semiconductor Surface Phys., R. H. Kingdton, ed., (University of Pennsylvania Press, Philadelphia, PA, 1957).Google Scholar
  13. 13.
    F. P. Fehlner and N. F. Mott, Oxidation of Metals 2, 59 (1970).Google Scholar
  14. 14.
    K. Hauffe, Reaktionen in und an Festen Stoffen (Springer, Berlin, 1955).Google Scholar
  15. 15.
    K. Hauffe, Oxydation von Metallen und Metallegierungen (Springer, Berlin, 1956).Google Scholar
  16. 16.
    K. Hauffe, in The Surface Chemistry of Metals and Semi-Conductors, H. C. Gatos, ed., (Wiley, New York, 1960).Google Scholar
  17. 17.
    U. R. Evans, The Corrosion and Oxidation of Metals (Edward Arnold, London, 1960).Google Scholar
  18. 18.
    A. T. Fromhold, Jr. and E. L. Cook, Journal of Chemical Physics 44, 4564 (1996); Physical Review 158, 600 (1967).Google Scholar
  19. 19.
    K. Hauffe and B. Ilschner, Zeitschrift Fur Elecktrochemie 58, 382, 467 (1954).Google Scholar
  20. 20.
    D. E. Davies, U. R. Evans, and J. N. Agar, Proceedings of the Royal Society of London Series A 225, 443 (1954).Google Scholar
  21. 21.
    P. L. Harrison, Journal of Electrochemical Society 112, 235 (1965).Google Scholar
  22. 22.
    P. Kofstad, Journal of the Institute of Metals 91, 235 (1962–1963).Google Scholar
  23. 23.
    M. A. H. Lanyon and E. Trapnell, Proceeding of the Royal Society of London Series A 227, 387 (1955).Google Scholar
  24. 24.
    D. D. Eley and P. R. Wilkinson, Proceedings of the Royal Society of London Series A 254, 327 (1960).Google Scholar
  25. 25.
    F. P. Fehlner and N. F. Mott, Oxidation of Metals and Alloys (American Society for Metals, Metals Park, OH, 1971).Google Scholar
  26. 26.
    H. H. Uhlig, Acta Metallurgica 4, 541 (1956).Google Scholar
  27. 27.
    H. H. Von Baumbach, H. Dunwald, and C. Wagner, Zeitschrift Fur Physikalische Chemie 22B, 226 (1933).Google Scholar
  28. 28.
    E. C. Milliken and J. F. Cordaro, Journal of Materials Research 5, 53 (1990).Google Scholar
  29. 29.
    M. L. Ettorche, C. Carel, and G Peslerbe, Bulletin of Society of Science Bretagne 65, (1994).Google Scholar
  30. 30.
    C. Carel, M. Mouallem-Bahout, and J. Gaude, Solid State Ionics 117, 47 (1999).Google Scholar
  31. 31.
    C. Wagner, Zeitschrift Fur Physikalische Chemie B21, 25 (1933).Google Scholar
  32. 32.
    C. Wagner, Atom Movements (American Society Metals, Cleveland, OH, 1951).Google Scholar
  33. 33.
    C. Wagner, Progress in Solid State Chemistry 10, 3 (1975).Google Scholar
  34. 34.
    O. Kubaschewski and C. B. Alcock, Metallurgical Thermochemistry, 5th ed., (Oxford Pergamon 1979).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • Y. Zhu
    • 1
  • K. Mimura
    • 1
  • M. Isshiki
    • 1
  1. 1.Institute of Multidisciplinary Research for Advanced MaterialsTohoku UniversityJapan

Personalised recommendations