Theoretical Study of Possible Reaction Mechanisms for the Formation of Carbodiimide in the Interstellar Medium (ISM) and Polarizabilities of Carbodiimide

  • Manisha Yadav
  • Shivani
  • Alka MisraEmail author
  • Poonam Tandon
Theoretical Paper


The Structure of carbodiimide has been studied by using quantum chemical methods. Carbodiimide (HNCNH) has been detected towards Sagittarius B2 (N) in interstellar medium (ISM). Two reaction mechanisms have been proposed to study the formation of interstellar Carbodiimide. The first reaction mechanism is based on molecule-radical and the second one is a radical-radical mechanism, through previously detected interstellar molecules or radicals. Quantum chemical calculations have been performed by using density functional theory (DFT) and Moller-Plesset second order perturbation (MP2) theory, in gas phase as well as in polarizable continuum model (PCM). The proposed reaction paths are exothermic and barrierless which indicates the possibility of carbodiimide formation in ISM. Several basis sets have been used to verify the validity and accuracy of the results. The isotropic and anisotropic polarizabilities of carbodiimide have been calculated from relevant tensor components for both reaction mechanisms with the help of data obtained by DFT/B3LYP and MP2 methods using aug-cc-pVTZ basis sets in gaseous phase as well as in PCM.


Interstellar molecules Carbodiimide Quantum chemical methods Polarizability 



The financial support to A. Misra (PI) and Shivani (RA) from Council of Science & Technology (CST) under major research project (CST/4053) is gratefully acknowledged.

Supplementary material

11084_2019_9577_MOESM1_ESM.docx (13 kb)
ESM 1 (DOCX 13 kb)


  1. Agúndez M, Cernicharo J, Guélin M, Kahane C, Roueff E, Klos J, García MG (2010) Astronomical identification of CN-, the smallest observed molecular anion. Astron Astrophys 517:L2 CrossRefGoogle Scholar
  2. Bates DR (1983) Theory of molecular formation by radiative association in interstellar clouds. Astrophys J 270:564–577 CrossRefGoogle Scholar
  3. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652 CrossRefGoogle Scholar
  4. Bedran-Russo AKB, Vidal CM, Dos Santos PH, Castellan CS (2010) Long-term effect of carbodiimide on dentin matrix and resin-dentin bonds. J Biomed Mater Res Part B 94(1):250–255 Google Scholar
  5. Belloche A, Müller HS, Menten KM, Schilke P, Comito C (2013) Complex organic molecules in the interstellar medium. Astron Astrophys 559:A47 CrossRefGoogle Scholar
  6. Blackman GL, Brown RD, Godfrey PD, Gunn HI (1976) The microwave spectrum of HNC. Nature 261(5559):395 CrossRefGoogle Scholar
  7. Brown RD, Godfrey PD, Storey JWV, Clark FO (1976) Detection of interstellar HNC. Nature 262:672–674 CrossRefGoogle Scholar
  8. Canneaux S, Bohr F, Henon E (2014) KiSThelP: A program to predict thermodynamic properties and rate constants from quantum chemistry results. J Comput Chem 35(1):82–93CrossRefPubMedGoogle Scholar
  9. Duvernay F, Chiavassa T, Borget F, Aycard JP (2004) Experimental Study of water − Ice Catalyzed Thermal Isomerization of Cyanamide into Carbodiimide. J Am Chemical Soc 126(25):7772–7773 CrossRefGoogle Scholar
  10. Duvernay F, Chiavassa T, Borget F, Aycard JP (2005) Carbodiimide production from cyanamide by UV irradiation and thermal reaction on amorphous water ice. J Phys Chem A 109(4):603–608 CrossRefPubMedGoogle Scholar
  11. Frisch MJEA, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Nakatsuji H (2009) Gaussian 09, revision a. 02, Gaussian.Google Scholar
  12. Gilles MA, Hudson AQ, Borders CL Jr (1990) Stability of water-soluble carbodiimides in aqueous solution. Anal Biochem 184(2):244–248 CrossRefPubMedGoogle Scholar
  13. Goicoechea JR, Cernicharo J, Caux E, (2000) ISO Detections of C3 and NH in SGR B2. In ISO Beyond the Peaks 456, p. 99.
  14. Graninger DM, Herbst E, Öber KI, Vasyunin AI (2014) The HNC/HCN ratio in star-forming regions. Astrophys J 787(1):74 CrossRefGoogle Scholar
  15. Greaves JS, Nyman LA (1996) A chemical survey of molecules in spiral arm clouds. Astron Astrophys 305:950 Google Scholar
  16. Guzmán DC, Vázquez IE, Mejía GB, García EH, DelÁngel DS, Olguín HJ (2005) Effect of pentylenetetrazole and carbodiimide on oxidation stress markers in rat brain. Basic Clin Pharmacol Toxicol 96(6):512–513 CrossRefPubMedGoogle Scholar
  17. Herbst E, Klemperer W (1973) The formation and depletion of molecules in dense interstellar clouds. Astrophys J 185:505–534 CrossRefGoogle Scholar
  18. Hill JG (2013) Gaussian basis sets for molecular applications. Int J Quantum Chem 113(1):21–34 CrossRefGoogle Scholar
  19. Jefferts KB, Penzias AA, Wilson RW (1970) Observation of the CN Radical in the Orion Nebula and W51. Astrophys J 161:L87 CrossRefGoogle Scholar
  20. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. J Chem Phys 72:650 CrossRefGoogle Scholar
  21. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785 CrossRefGoogle Scholar
  22. Lewis M, Wu Z, Glaser R (2000) Polarizabilities of carbon dioxide and carbodiimide. Assessment of theoretical model dependencies on dipole polarizabilities and dipole polarizability anisotropies. J Phys Chem A 104(48):11355–11361 CrossRefGoogle Scholar
  23. Liszt H, Lucas R (2001) Comparative chemistry of diffuse clouds-II. CN, HCN,HNC,CH3CN & N2H^ +. Astron Astrophys 370:2576–2585 CrossRefGoogle Scholar
  24. McGuire BA, Loomis RA, Charness CM, Corby JF, Blake GA, Hollis JM, Remijan AJ (2012) A new astronomical detection from the GBT PRIMOS survey via maser emission features. The Astrophysical Journal Letters 758(2):L33 CrossRefGoogle Scholar
  25. Meyer DM, Roth KC (1991) Discovery of interstellar NH. Astrophys J 376:L49–L52 CrossRefGoogle Scholar
  26. Michelle MF, William JP, Warren JH (1982) Self-consistent molecular orbital methods. J Chem Phys 77:3654 CrossRefGoogle Scholar
  27. Miertuš S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chem Phys 55(1):117–129 CrossRefGoogle Scholar
  28. Nummelin A, Bergman P, Hjalmarson Å, Friberg P, Irvine WM, Millar TJ, Saito S (2000) A three-position spectral line survey of Sagittarius B2 between 218 and 263 GHz. Astrophys J 128(1):213 CrossRefGoogle Scholar
  29. Pople JA, Binkley JS, Seeger R (1976) Theoretical models incorporating electron correlation. Int J Quantum Chem 10:S10, 1–S10,19 Google Scholar
  30. Tordini F, Bencini A, Bruschi M, De Gioia L, Zampella G, Fantucci P (2003) Theoretical study of hydration of cyanamide and carbodiimide. J Phys Chem A 107(8):1188–1196 CrossRefGoogle Scholar
  31. Williams A, Ibrahim TI (1981) Carbodiimide chemistry: recent advances 81, 6, 589–636.
  32. Zilla P, Deon B, Paul H (2005) Carbodiimide treatment dramatically potentiates the anticalcific effect of alpha-amino oleic acid on glutaraldehyde-fixed aortic wall tissue. Ann Thorac Surg 79(3):905–910 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Manisha Yadav
    • 1
    • 2
  • Shivani
    • 1
  • Alka Misra
    • 1
    Email author
  • Poonam Tandon
    • 2
  1. 1.Department of Mathematics and AstronomyUniversity of LucknowLucknowIndia
  2. 2.Department of PhysicsUniversity of LucknowLucknowIndia

Personalised recommendations