Advertisement

Prebiotic Syntheses Under Shock in the Water – Formamide – Potassium Bicarbonate – Sodium Hydroxide System

  • Valery G. ShtyrlinEmail author
  • Valery A. Borissenok
  • Nikita Yu. Serov
  • Vladimir G. Simakov
  • Vyacheslav A. Bragunets
  • Ivan R. Trunin
  • Irina A. Tereshkina
  • Sergey A. Koshkin
  • Mikhail S. Bukharov
  • Edward M. Gilyazetdinov
  • Evgeny E. Shestakov
  • Anna G. Sirotkina
  • Alexey V. Zakharov
Prebiotic Synthesis
  • 217 Downloads

Abstract

Syntheses under shock in nitrogen bubbled samples of the water – formamide – bicarbonate – sodium hydroxide system at pH 8.63, 9.46 and 10.44 were performed in the stainless steel preservation capsules. The maximum temperature and pressure in the capsules reached 545 K and 12.5 GPa respectively. Using the LC-MS-MS analysis, the 21 synthesis products have been identified, including amines and polyamines, carboxamide, acetamide and urea derivatives, compounds containing aniline, pyrrolidine, pyrrole, imidazole, as well as alcohol groups. It was found that the Fischer-Tropsch-type syntheses with catalysis on the surface of the stainless steel of the conservation capsule associated with the adsorbed hydrogen cyanide reactions and transamidation processes play the main role in the shock syntheses. Formation reactions of all the above-mentioned compounds have been suggested. It was proposed that hydrogen cyanide, ammonia, isocyanic acid, aminonitrile, aminoacetonitrile, as well as adsorbed species H(a), CH(a), CH2(a), CHOH(a), NH2(a) and H2CNH(a) are especially important for the formation of the products. A reduction reaction of adsorbed bicarbonate with hydrogen to formaldehyde has been first postulated. In the studied system also classical reactions take place – Wöhler’s synthesis of urea and Butlerov’s synthesis of methenamine. It was suggest that material of meteorites may be an effective catalyst in the Fischer-Tropsch-type syntheses at falling of the iron-nickel meteorites in the water – formamide regions on the early Earth. It was concluded that life could have originated due to the impact of meteorites on alkaline water-formamide lakes located near volcanoes on the early Earth.

Keywords

Shock wave Prebiotic Fischer-Tropsch-type syntheses Heterogeneous catalysis Formamide Bicarbonate 

Notes

Acknowledgements

We are deeply grateful to Dr. Yuri G. Shtyrlin and all scientific workers of the Research-Education Center “Pharmaceutics” of Kazan Federal University for assistance in the organization and implementation of the LC-MS-MS analysis of the samples.

Author Contributions

Metodology, general project management, analysis of the experimental data, discussion of the results, writing the article, Shtyrlin V.G.; Shock experiments management, analysis of the experimental data, discussion of the results, Borissenok V.A.; Preparation of the experiments, analysis of the experimental data, discussion of the results, design of the article, Serov N.Y.; Performing shock experiments, Simakov V.G., Bragunets V.A., Shestakov E.E.; Performing LC-MS-MS experiments, Koshkin S.A.; Computation of time-dependences of temperature and pressure at shock, Trunin I.R., Tereshkina I.A.; Discussion of the results, Bukharov M.S., Gilyazetdinov E.M., Sirotkina A.G., Zakharov A.V.

Funding

The work was supported by Russian Foundation for Basic Research (RFBR) grant No 17-03-00133.

Supplementary material

11084_2019_9575_MOESM1_ESM.pdf (696 kb)
ESM 1 (PDF 696 kb)

References

  1. Adam ZA, Hongo Y, Cleaves HJ II, Yi R, Fahrenbach AC, Yoda I, Aono M (2018) Estimating the capacity for production of formamide by radioactive minerals on the prebiotic earth. Sci Rep 8(265):265.  https://doi.org/10.1038/s41598-017-18483-8 CrossRefGoogle Scholar
  2. Bar-Nun A, Bar-Nun N, Bauer SH, Sagan C (1970) Shock synthesis of amine acids in simulated primitive environment. Science 168:470–472CrossRefGoogle Scholar
  3. Blank JG, Miller GH, Ahrens MJ, Winans RE (2001) Experimental shock chemistry of aqueous amino acid solutions and the cometary delivery of prebiotic compounds. OLEB 31:15–51.  https://doi.org/10.1023/A:1006758803255 Google Scholar
  4. Boutlerow A (1861) Formation synthétique d'une substance sucrée (Synthetic formation of a sugary substance). Comptes Rendus Acad Sci 53:145–147. Reprinted in German as: Butlerow A (1861) Bildung einer zuckerartigen Substanz durch Synthese (Formation of a sugar-like substance by synthesis) Justus Liebigs Annalen der Chemie 120:295–298Google Scholar
  5. Butlerov A (1860) Üeber ein neues Methylenederivat. Ann Chem 115:322–327CrossRefGoogle Scholar
  6. Cleaves HJ II (2008) The prebiotic geochemistry of formaldehyde. Precambrian Res 164:111–118.  https://doi.org/10.1016/j.precamres.2008.04.002 CrossRefGoogle Scholar
  7. Darwin C (1888) The life and letters of Charles Darwin, vol 3, p 18, Letter to Joseph Hooker. John Murray, LondonGoogle Scholar
  8. Deamer D, Weber AL (2010) Bioenergetics and life’s origin. Cold Spring Harb Perspect Biol 2:a0044929.  https://doi.org/10.1101/cshperspect.a004929 CrossRefGoogle Scholar
  9. Djokic T, Van Kranendork MJ, Campbell KA, Walter MR, Wald CR (2017) Earliest signs of life on land preserved in ca. 3.5 Ga hot spring deposits. Nat Commun 8:15263.  https://doi.org/10.1038/ncomms.15263 CrossRefGoogle Scholar
  10. Ferus M, Michlćiková R, Shestivská V, Šponer J, Šponer JE, Civiš S (2014) High-energy chemistry of formamide: a simpler way for nucleobase formation. J Phys Chem A 118:719–736.  https://doi.org/10.1021/jp411415p CrossRefGoogle Scholar
  11. Ferus M, Nesvorný D, Šponer J, Kubelí P, Michlćiková R, Shestivská V, Šponer JE, Svatopluk C (2015) High-energy chemistry of formamide: a unified mechanism of nucleobase formation. PNAS 112:657–662 http://www.pnas.org/cgi/doi/10.1073/pnas.1412072111 CrossRefGoogle Scholar
  12. Fiore M, Strazewski P (2016) Prebiotic lipidic amphiphiles and condensing agents on the early earth. Life 6:17.  https://doi.org/10.3390/life6020017 CrossRefGoogle Scholar
  13. Fischer F, Tropsch H (1926) The synthesis of petroleum at atmospheric pressures from gasification products of coal. Brennstoff-Chemie 7:97–104Google Scholar
  14. Fox SW, Windsor CR (1970) Synthesis of amino acids by the heating of formaldehyde and ammonia. Science 170:984–986CrossRefGoogle Scholar
  15. Furukawa Y, Sekine T, Oba M, Kakegawa T, Nakazawa H (2009) Biomolecule formation by oceanic impacts on early earth. Nat Geosci 2:62–66.  https://doi.org/10.1038/NGEO383 CrossRefGoogle Scholar
  16. Gavrilov NF, Ivanova GG, Selin VI, Sofronov VN (1982) The UP-OK program for solving one-dimensional problems of continuum mechanics in a one-dimensional complex. Questions of atomic science and technology. Ser Methods and programs for the numerical solution of problems of mathematical physics 3:11–14 (in Russian)Google Scholar
  17. Gerasimov MV, Dikov YP, Yakovlev OI, Wlotzka F (2002) Experimental investigation of the role of water in impact vaporization chemistry. Deep-Sea Res II Top Stud Oceanogr 49:995–1009.  https://doi.org/10.1016/S0967-0645(01)00138-2 CrossRefGoogle Scholar
  18. Gross JH (2004) Mass spectrometry. A textbook. Springer, Berlin HeidelbergCrossRefGoogle Scholar
  19. Hsiao M-K, Lo W-T, Wang J-H, Chen H-L (2016) Hydrogenation of hydrogen cyanide to methane and ammonia by a metal catalyst: insight from first-principles calculations. J Phys Chem C 120:22946–22956.  https://doi.org/10.1021/acs.jpcc.6b06490 CrossRefGoogle Scholar
  20. Islam S, Powner MV (2017) Prebiotic systems chemistry: complexity overcoming clutter. Chem 2:470–501.  https://doi.org/10.1016/j.chempr.2017.03.001 CrossRefGoogle Scholar
  21. Kay JJ (2017) Mechanism of shock-induced reactions in high explosive. AIP Conf Proc 1793:030023–1–030023–9.  https://doi.org/10.1063/1.4971481
  22. Kempe S, Degens ET (1985) An early soda ocean? Chem Geol 53:95–108CrossRefGoogle Scholar
  23. Kölbel H, Trapper J (1966) Aliphatic amines from carbon monoxide, steam, and ammonia. Angew Chem Int Ed 5:843–844CrossRefGoogle Scholar
  24. Kompanichenko VN, Poturay VA, Shlufman KV (2015) Hydrothermal systems of Kamchatka are models of the prebiotic environment. OLEB 45:93–103.  https://doi.org/10.1007/s11084-015-9429-2 Google Scholar
  25. Kress M, Tielens AGGM (2001) The role of Fisher-Tropsch catalysis in solar nebula chemistry. Meteorit Planet Sci 36:75–91CrossRefGoogle Scholar
  26. Krissansen-Totton J, Arney GN, Catling DC (2018) Constraining the climate and ocean pH of the early earth with a geological carbon cycle model. PNAS 115:4105–4110 http://www.pnas.org/cgi/doi/10.1073/pnas.1721296115 CrossRefGoogle Scholar
  27. Kurosawa K, Sugita S, Ishibashi K, Hasegawa S, Sekine Y, Ogawa NO, Kadono T, Ohno S, Ohkouchi N, Nagaoka Y, Matsui T (2013) Hydrogen cyanide production due to mid-size impacts in a redox-neutral N2-rich atmosphere. OLEB 43:221–245.  https://doi.org/10.1007/s11084-013-9339-0 Google Scholar
  28. Lanigan RM, Sheppard TD (2018) Recent developments in amide synthesis: direct amidation of carboxylic acids and transamidation reactions. Eur J Org Chem 33:7453–7467.  https://doi.org/10.1002/ejoc.201300573 Google Scholar
  29. Martins Z, Price MC, Goldman N, Sephton MA, Burchell MJ (2013) Shock synthesis of amino acids from impacting cometary and icy planet surface analogues. Nat Geosci 6:1045–1049.  https://doi.org/10.1038/NGEO1930 CrossRefGoogle Scholar
  30. Menor-Salván C (ed) (2018) Prebiotic chemistry and chemical evolution of nucleic acids. Springer, SwitzerlandGoogle Scholar
  31. Mulkidjanian AY, Bychkov AY, Dibrova DV, Galperin MY, Koonin EV (2012) Origin of first cells at terrestrial, anoxic geothermal fields. PNAS 109:E821–E830 http://www.pnas.org/cgi/doi/10.1073/pnas.1117774109 CrossRefGoogle Scholar
  32. Nakashima S, Kebukawa Y, Kitadai N, Igisu M, Matsuoka N (2018) Geochemistry and the origin of life: extraterrestrial processes, chemical evolutions on earth, fossilized life’s records, to natures of the extant life. Life 8:39.  https://doi.org/10.3390/life8040039 CrossRefGoogle Scholar
  33. Nakazawa H, Sekine T, Kakegawa T, Nakazawa S (2005) High yield shock synthesis of ammonia from iron, water and nitrogen available on the early earth. Earth Planet Sci Lett 235:356–360.  https://doi.org/10.1016/j.epsl.2005.03.024 CrossRefGoogle Scholar
  34. Nguyen VS, Abbott HL, Dawley MM, Orlando TM, Leszcynski J, Nguyen MT (2011) Theoretical study of formamide decomposition pathways. J Phys Chem A 41:841–851.  https://doi.org/10.1021/jp109143j CrossRefGoogle Scholar
  35. Nguyen HT, Jeilani YA, Hung HM, Nguyen MT (2015) Radical pathways for the prebiotic formation of pyrimidine bases from formamide. J Phys Chem A 119:8871–8883.  https://doi.org/10.1021/acs.jpca.5b03625 CrossRefGoogle Scholar
  36. Niether D, Wiegand S (2017) Heuristic approach to understanding the accumulation process in hydrothermal pores. Entropy 19:33.  https://doi.org/10.3390/e19010033 CrossRefGoogle Scholar
  37. Niether D, Afanasenkan D, Dhont JKG, Wiegand S (2016) Accumulation of formamide in hydrothermal pores to form prebiotic nucleobases. PNAS 113:4272–4277 http://www.pnas.org/cgi/doi/10.1073/pnas.1600275113 CrossRefGoogle Scholar
  38. Noe CR, Freissmuth J, Richter P, Miculka C, Lachmann B, Eppacher S (2013) Formaldehyde – a key monad of the biomolecular system. Life 3:486–501.  https://doi.org/10.3390/life3030486 CrossRefGoogle Scholar
  39. Ogorodnikov SK (1984) Formaldehyde. Khimiya, Leningrad (in Russian)Google Scholar
  40. Orgel LE (2008) The implausibility of metabolic cycles on the prebiotic earth. PLoS Biol 6:e18.  https://doi.org/10.1371/journal.pbio.0060018 CrossRefGoogle Scholar
  41. Powner MW, Sutherland JD (2011) Prebiotic chemistry: a new modus operandi. Phil Trans R Soc B 366:2870–2877.  https://doi.org/10.1098/rstb.2011.0134 CrossRefGoogle Scholar
  42. Rabinowitz J, Hampai A (1984-1985) Quantitative polyphosphate-induced “prebiotic” peptide formation in H2O by addition of certain azoles and ions. J Mol Evol 21:199–201Google Scholar
  43. Rotelli L, Trigo-Rodriges JM, Moyano-Cambero CE, Carota E, Botta L, Di Mauro E, Saladino R (2016) The key role of meteorites in the formation of relevant prebiotic molecules in a formamide/water environment. Sci Rep 6(38888).  https://doi.org/10.1038/srep38888
  44. Saladino R, Botta G, Pino S, Constanzo G, Di Mauro E (2012) Genetics first or metabolism first? The formamide clue. Chem Soc Rev 41:5526–5565.  https://doi.org/10.1039/c2cs35066a CrossRefGoogle Scholar
  45. Saladino R, Botta G, Delfino M, Di Mauro E (2013) Meteorites as catalysts for prebiotic chemistry. Chem Eur J 19:16916–16922.  https://doi.org/10.1002/chem.201303690 CrossRefGoogle Scholar
  46. Saladino R, Carota E, Botta G, Kapralov M, Timoshenko GN, Rozanov AY, Krasavin E, Di Mauro E (2015) Meteorite-catalyzed syntheses of nucleosides and of other prebiotic compounds from formamide under proton irradiation. PNAS 112:E2746–E2755 http://www.pnas.org/cgi/doi/10.1073/pnas.1422225112 CrossRefGoogle Scholar
  47. Saladino R, Carota E, Botta G, Kapralov M, Timoshenko GN, Rozanov AY, Krasavin E, Di Mauro E (2016) First evidence of the role of heavy ion radiation of meteorites and formamide in the origin of biomolecules. OLEB 46:515–521.  https://doi.org/10.1007/s11084-016-9495-0 Google Scholar
  48. Saladino R, Botta L, Di Mauro E (2018) The prevailing catalytic role of meteorites in formamide prebiotic processes. Life 8:6.  https://doi.org/10.3390/life8010006 CrossRefGoogle Scholar
  49. Sawai H, Orgel LE (1975) Prebiotic peptide formation in the solid state. III. J Mol Evol 6:185–197Google Scholar
  50. Schwartz AW (1995) The RNA world and its origin. Planet Space Sci 43:161–165CrossRefGoogle Scholar
  51. Serov NY, Shtyrlin VG, Khayarov HR (2016) Trimetaphosphate and imidazole – possible reagents in prebiotic peptide synthesis. Phosporus Sulfer Silicon 191:1558–1559.  https://doi.org/10.1080/10426507.2016.1213258 CrossRefGoogle Scholar
  52. Šponer JE, Szabda R, Góra RW, Saitta AM, Pietrucci F, Saija F, Di Mauro E, Saladino R, Ferus M, Civiš S, Šponer J (2016) Prebiotic synthesis of nucleic acids and their building blocks at the atomic level – merging models and mechanisms from advanced computations and experiments. Phys Chem Chem Phys 18:20047–20066.  https://doi.org/10.1039/c6cp00670a CrossRefGoogle Scholar
  53. Storch H, Golumbic N, Anderson RB (1951) The Fischer-Tropsch and related syntheses. Wiley, New YorkGoogle Scholar
  54. Studier MH, Hayatsu R, Anders E (1968) Origin of organic matter in early solar system – I. Hydrocarbons. Geochim Cosmochim Acta 32:151–173CrossRefGoogle Scholar
  55. Stüeken EE, Buick R, Schauer AJ (2015) Nitrogen isotope evidence for alkaline lakes on late Archean continents. Earth Planet Sci Lett 411:1–10.  https://doi.org/10.1016/j.epsl.2014.11.037
  56. Sutherland JD (2017) Studies on the origin of life – the end of the beginning. Nature Rev Chem 1:0012.  https://doi.org/10.1038/s41570-016-0012 CrossRefGoogle Scholar
  57. Suzuki C, Furukawa Y, Kobayashi T, Sekine T, Nakazawa H, Kakegawa T (2015) Shock wave synthesis of amino acids from solutions of ammonium formate and ammonium bicarbonate. Geochem Geophys Geosystems 16:2382–2394.  https://doi.org/10.1002/2015GC005783 CrossRefGoogle Scholar
  58. Truche L, Berger G, Domergue L (2013) Engineered materials as potential geocatalists in deep geological waste repositories: a case study of the stainless steel catalytic effect on nitrate reduction by hydrogen. Appl Geochem 35:279–288.  https://doi.org/10.1016/j.apgeochem.2013.05.001 CrossRefGoogle Scholar
  59. Tsipis CA, Karipidis PA (2003) Mechanism of a chemical classic: quantum chemical investigation of the autocatalyzed reaction of the serendipitous Wöhler synthesis of urea. J Am Chem Soc 125:2307–2318.  https://doi.org/10.1021/ja020656n CrossRefGoogle Scholar
  60. van de Loosdrecht J, Botes FG, Ciobica IM, Ferreira A, Gibson P, Moodley DJ, Saib AM, Visagie JL, Weststrate CJ, Niemantsverdriet JW (2013) Fischer-Tropsch synthesis: catalysts and chemistry. In: Reedijk J, Poeppelmeier K (eds) Comprehensive inorganic chemistry II, vol 7. Elsevier, Oxford, pp 525–557CrossRefGoogle Scholar
  61. von Henkel HR (2012) The influence of ammonia on Fischer-Tropsch synthesis and formation of N-containing compounds. Dissertation, Carl von Ossietzky Universität Oldenburg, 201 ppGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Valery G. Shtyrlin
    • 1
    Email author
  • Valery A. Borissenok
    • 2
  • Nikita Yu. Serov
    • 1
  • Vladimir G. Simakov
    • 2
    • 3
  • Vyacheslav A. Bragunets
    • 3
  • Ivan R. Trunin
    • 2
    • 3
  • Irina A. Tereshkina
    • 2
    • 3
  • Sergey A. Koshkin
    • 1
  • Mikhail S. Bukharov
    • 1
  • Edward M. Gilyazetdinov
    • 1
  • Evgeny E. Shestakov
    • 2
    • 3
  • Anna G. Sirotkina
    • 2
  • Alexey V. Zakharov
    • 1
  1. 1.A.M. Butlerov Chemistry InstituteKazan Federal UniversityKazanRussian Federation
  2. 2.Sarov Physical Technical Institute, National Research Nuclear University “MEPhI” (Moscow Engineering Physics Institute)SarovRussian Federation
  3. 3.Russian Federal Nuclear CenterAll-Russian Research Institute of Experimental PhysicsSarovRussian Federation

Personalised recommendations