Advertisement

Origins of Life and Evolution of Biospheres

, Volume 48, Issue 4, pp 395–406 | Cite as

Chiral Recognition in Cold Gas-Phase Cluster Ions of Carbohydrates and Tryptophan Probed by Photodissociation

  • Doan Thuc Nguyen
  • Akimasa FujiharaEmail author
Prebiotic Chemistry, Chirality

Abstract

Chiral recognition between tryptophan (Trp) and carbohydrates such as d-glucose (d-Glc), methyl-α-d-glucoside (d-glucoside), d-maltose, and d-cellobiose in cold gas-phase cluster ions was investigated as a model for chemical evolution in interstellar molecular clouds using a tandem mass spectrometer containing a cold ion trap. The photodissociation mass spectra of cold gas-phase clusters that contained Na+, Trp enantiomers, and d-maltose showed that Na+(d-Glc) was formed via the glycosidic bond cleavage of d-maltose from photoexcited homochiral Na+(d-Trp)(d-maltose), while the dissociation did not occur in heterochiral Na+(l-Trp)(d-maltose). The enantiomer-selective dissociation was also observed in the case of d-cellobiose. The enantiomer-selective glycosidic bond cleavage of disaccharides suggested that photoexcited d-Trp could prevent chemical evolution of sugar chains from d-enantiomer of carbohydrates in molecular clouds. The spectra of gas-phase clusters that contained Na+, Trp enantiomers, and d-Glc indicated that enantiomer-selective protonation of l-Trp from d-Glc could induce enantiomeric excess via collision-activated dissociation of the protonated l-Trp. In the case of protonated clusters, photoexcited H+(l-Trp) dissociated via Cα–Cβ bond cleavage in the presence of d-Glc or d-glucoside, where the excited states of H+(l-Trp) contributed to the enantiomer-selective reaction in the clusters. These enantiomer selectivities in cold gas-phase clusters indicated that chirality of a molecule induced enantiomeric excess of other molecules via enantiomer-selective reactions in molecular clouds.

Keywords

Chemical evolution Molecular cloud Enantiomer Chirality Mass spectrometry 

Notes

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number 17 K14441.

Compliance with Ethical Standards

Conflict of Interest

None.

References

  1. Abplanalp MJ, Förestel M, Kaiser RI (2016) Exploiting single photon vacuum ultraviolet photoionization to unravel the synthesis of complex organic molecules in interstellar ices. Chem Phys Lett 644:79–98CrossRefGoogle Scholar
  2. Aribi HE, Orlova G, Hopkinson AC, Siu KWM (2004) Gas-phase fragmentation reactions of protonated aromatic amino acids: concomitant and consecutive neutral eliminations and radical cation formations. J Phys Chem A 108:3844–3854CrossRefGoogle Scholar
  3. Asvany O, Padma Kumar P, Redlich B, Hegemann I, Schlemmer S, Marx D (2005) Understanding the infrared spectrum of bare CH5 +. Science 309:1219–1222CrossRefGoogle Scholar
  4. Awad H, El-Aneed A (2013) Enantioselectivity of mass spectrometry: challenges and promises. Mass Spectrom Rev 32:466–483Google Scholar
  5. Bernstein MP, Dworkin JP, Sandford SA, Cooper GW, Allamandola LJ (2002) Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues. Nature 416:401–403CrossRefGoogle Scholar
  6. Bonner WA (1991) The origin and amplification of biomolecular chirality. Orig Life Evol Biosph 21:59–111CrossRefGoogle Scholar
  7. Boyarkin OV, Mercier SP, Kamariotis A, Rizzo TR (2006) Electronic spectroscopy of cold, protonated tryptophan and tyrosine. J Am Chem Soc 128:2816–2817CrossRefGoogle Scholar
  8. Cooper G, Rios AC (2016) Enantiomer excesses of rare and common sugar derivatives in carbonaceous meteorites. Proc Natl Acad Sci U S A 113:E3322–E3331CrossRefGoogle Scholar
  9. Cronin JR, Pizzarello S (1997) Enantiomeric excesses in meteoritic amino acids. Science 275:951–955CrossRefGoogle Scholar
  10. DeMott PJ, Möhler O, Stetzer O, Vali G, Levin Z, Petters MD, Murakami M, Leisner T, Bundke U, Klein H, Kanji ZA, Cotton R, Jones H, Benz S, Brinkmann M, Rzesanke D, Saathoff H, Nicolet M, Saito A, Nillius B, Bingemer H, Abbatt J, Ardon K, Ganor E, Georgakopoulos DG, Saunders C (2011) Resurgence in ice nuclei measurement research. B Am Meteorol Soc 92:1623–1635CrossRefGoogle Scholar
  11. Dhzonson A, Maier JP (2006) Electronic absorption spectra of cold organic cations: 2,4-Hexadiyne. Int J Mass Spectrom 255-256:139–143CrossRefGoogle Scholar
  12. Doan TN, Fujihara A (2018) Enantiomer-selective photo-induced reaction of protonated tryptophan with disaccharides in the gas phase. Orig Life Evol Biosph 48:123–130CrossRefGoogle Scholar
  13. Ehrenfreund P, Bernstein MP, Dworkin JP, Sandford SA, Allamandola LJ (2001) The photostability of amino acids in space. Astrophys J 550:L95–L99CrossRefGoogle Scholar
  14. Engel MH, Macko SA (1997) Isotopic evidence for extraterrestrial non-racemic amino acids in the Murchison meteorite. Nature 389:265–268CrossRefGoogle Scholar
  15. Fárník M, Lengyel J (2018) Mass spectrometry of aerosol particle analogues in molecular beam experiments. Mass Spectrom Rev 37:630–651CrossRefGoogle Scholar
  16. Fujihara A, Maeda N (2017) Quantitative chiral analysis of amino acids in solution using enantiomer-selective photodissociation of cold gas-phase tryptophan via chiral recognition. Anal Chim Acta 979:31–35CrossRefGoogle Scholar
  17. Fujihara A, Okawa Y (2018) Chiral and molecular recognition of monosaccharides by photoexcited tryptophan in cold gas-phase noncovalent complexes as a model for chemical evolution in interstellar molecular clouds. Anal Bioanal Chem 410:6279–6287CrossRefGoogle Scholar
  18. Fujihara A, Shimada A (2019) Gas-phase N2 adsorption on mass-selected hydrogen-bonded cluster ions. Chem Phys Lett 718:1–6CrossRefGoogle Scholar
  19. Fujihara A, Matsumoto H, Shibata Y, Ishikawa H, Fuke K (2008) Photodissociation and spectroscopic study of cold protonated dipeptides. J Phys Chem A 112:1457–1463CrossRefGoogle Scholar
  20. Fujihara A, Noguchi N, Yamada Y, Ishikawa H, Fuke K (2009) Microsolvation and protonation effects on geometric and electronic structures of tryptophan and tryptophan-containing dipeptides. J Phys Chem A 113:8169–8175CrossRefGoogle Scholar
  21. Fujihara A, Sato T, Hayakawa S (2014a) Enantiomer-selective ultraviolet photolysis of temperature-controlled protonated tryptophan on a chiral crown ether in the gas phase. Chem Phys Lett 610-611:228–233CrossRefGoogle Scholar
  22. Fujihara A, Sha Y, Matsuo S, Toyoda M, Hayakawa S (2014b) High-energy collision-activated and electron-transfer dissociation of gas-phase complexes of tryptophan with Na+, K+, and Ca2+. Eur Phys J D 68:273–277CrossRefGoogle Scholar
  23. Fujihara A, Maeda N, Hayakawa S (2014c) Enantiomer-selective photolysis of cold gas-phase tryptophan in L-serine clusters with linearly polarized light. Orig Life Evol Biosph 44:67–73CrossRefGoogle Scholar
  24. Fujihara A, Maeda N, Doan TN, Hayakawa S (2017a) Enantiomeric excess determination for monosaccharides using chiral transmission to cold gas-phase tryptophan in ultraviolet photodissociation. J Am Soc Mass Spectrom 28:224–228CrossRefGoogle Scholar
  25. Fujihara A, Matsuyama H, Tajiri M, Wada Y, Hayakawa S (2017b) Enantioselective collision-activated dissociation of gas-phase tryptophan induced by chiral recognition of protonated l-alanine peptides. Orig Life Evol Biosph 47:161–167CrossRefGoogle Scholar
  26. Gerlich D, Horning S (1992) Experimental investigation of radiative association processes as related to interstellar chemistry. Chem Rev 92:1509–1539CrossRefGoogle Scholar
  27. Gerlich D, Smith M (2006) Laboratory astrochemistry: studying molecules under inter- and circumstellar conditions. Phys Scr 73:C25–C31CrossRefGoogle Scholar
  28. Goebbert DJ, Wende T, Bergmann R, Meijer G, Asmis KR (2009) Messenger-tagging electrosprayed ions: vibrational spectroscopy of suberate dianions. J Phys Chem A 113:5874–5880CrossRefGoogle Scholar
  29. Gontareva NB, Kuzicheva EA, Shelegedin VN (2009) Synthesis and characterization of peptides after high-energy impact on the icy matrix: preliminary step for further UV-induced formation. Planet Space Sci 57:441–445CrossRefGoogle Scholar
  30. Grégoire G, Lucas B, Barat M, Fayeton JA, Dedonder-Lardeux C, Jouvet C (2009) UV photoinduced dynamics in protonated aromatic amino acid. Eur Phys J D 51:109–116CrossRefGoogle Scholar
  31. Hock C, Schmidt M, Kuhnen R, Bartels C, Ma L, Haberland H, von Issendorff B (2009) Calorimetric observation of the melting of free water nanoparticles at cryogenic temperatures. Phys Rev Lett 103:073401Google Scholar
  32. Hoose C, Möhler O (2012) Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments. Atmos Chem Phys 12:9817–9854CrossRefGoogle Scholar
  33. Klyne J, Bouchet A, Ishiuchi S, Fujii M, Schneider M, Baldauf C, Dopfer O (2018) Probing chirality recognition of protonated glutamic acid dimers by gas-phase vibrational spectroscopy and first-principles simulations. Phys Chem Chem Phys 20:28452–28464CrossRefGoogle Scholar
  34. Lee HHL, Kim HI (2017) Supramolecular analysis of monosaccharide derivatives using cucurbit[7]uril and electrospray ionization tandem mass spectrometry. Isr J Chem 57:1–8CrossRefGoogle Scholar
  35. Lioe H, O’Hair RAJ, Reid GE (2004) Gas-phase reactions of protonated tryptophan. J Am Soc Mass Spectrom 15:65–76CrossRefGoogle Scholar
  36. Lucas B, Barat M, Fayeton JA, Perot M, Jouvet C, Grégoire G, Nielsen SB (2008) Mechanisms of photoinduced Cα–Cβ bond breakage in protonated aromatic amino acids. J Chem Phys 128:164302–164308CrossRefGoogle Scholar
  37. McGuire BA, Carroll PB, Loomis RA, Finneran IA, Jewell PR, Remijan AJ, Blake GA (2016) Discovery of the interstellar chiral molecule propylene oxide (CH3CHCH2O). Science 352:1449–1452CrossRefGoogle Scholar
  38. Meinert C, Myrgorodska I, Pd M, Buhse T, Nahon L, Hoffmann SV, d’Hendecourt LLS, Meierhenrich UJ (2016) Ribose and related sugars from ultraviolet irradiation of interstellar ice analogs. Science 352:208–212CrossRefGoogle Scholar
  39. Mercier SR, Boyarkin OV, Kamariotis A, Guglielmi M, Tavernelli I, Cascella M, Rothlisberger U, Rizzo TR (2006) Microsolvation effects on the excited-state dynamics of protonated tryptophan. J Am Chem Soc 128:16938–16943CrossRefGoogle Scholar
  40. Munegumi T (2015) Aldolase as a chirality intersection of L-amino acids and D-sugars. Orig Life Evol Biosph 45:173–182CrossRefGoogle Scholar
  41. Muñoz Caro GM, Meierhenrich UJ, Schutte WA, Barbier B, Segovia AA, Rosenbauer H, Thiemann WHP, Brack A, Greenberg JM (2002) Amino acids from ultraviolet irradiation of interstellar ice analogues. Nature 416:403–406CrossRefGoogle Scholar
  42. Myrgorodska I, Meinert C, Hoffmann SV, Jones NC, Nahon L, Meierhenrich UJ (2017) Light on chirality: absolute asymmetric formation of chiral molecules relevant in prebiotic evolution. ChemPlusChem 82:74–87CrossRefGoogle Scholar
  43. Nanita SC, Cooks RG (2006) Serine octamers: cluster formation, reactions, and implications for biomolecule homochirality. Angew Chem Int Ed 45:554–569CrossRefGoogle Scholar
  44. Oki N, Fujihara A (2018) Molecular recognition and quantitative analysis of leucine and isoleucine using photodissociation of cold gas-phase noncovalent complexes. J Mass Spectrom 53:595–597CrossRefGoogle Scholar
  45. Pizzarello S, Groy TL (2011) Molecular asymmetry in extraterrestrial organic chemistry: an analytical perspective. Geochim Cosmochim Acta 75:645–656CrossRefGoogle Scholar
  46. Polfer NC, Oomens J, Dunbar RC (2006) IRMPD spectroscopy of metal-ion/tryptophan complexes. Phys Chem Chem Phys 8:2744–2751CrossRefGoogle Scholar
  47. Ruan C, Rodgers MT (2004) Cation–π interactions: structures and energetics of complexation of Na+ and K+ with aromatic amino acids, phenylalanine, tyrosine, and tryptophan. J Am Chem Soc 126:14600–14610CrossRefGoogle Scholar
  48. Ruiz-Mirazo K, Briones C, Escosura A (2014) Prebiotic systems chemistry: new perspectives for the origins of life. Chem Rev 114:285–366CrossRefGoogle Scholar
  49. Schmidt M, von Issendorff B (2012) Gas-phase calorimetry of protonated water clusters. J Chem Phys 136(9):164307CrossRefGoogle Scholar
  50. Scuderi D, Maitre P, Rondino F, Barbu-Debus KL, Lepere V, Zehnacker-Rentien A (2010) Chiral recognition in cinchona alkaloid protonated dimers: mass spectrometry and UV photodissociation studies. J Phys Chem A 114:3306–3312CrossRefGoogle Scholar
  51. Speranza M, Gasparrini F, Botta B, Villani C, Subissati D, Fraschetti C, Subrizi F (2009) Gas-phase enantioselective reactions in noncovalent ion-molecule complexes. Chirality 21:69–86CrossRefGoogle Scholar
  52. Spieler S, Duong CH, Kaiser A, Duensing F, Geistlinger K, Fischer M, Yang N, Kumar SS, Johnson MA, Wester R (2018) Vibrational predissociation spectroscopy of cold protonated tryptophan with different messenger tags. J Phys Chem A 122:8037–8046CrossRefGoogle Scholar
  53. Takats Z, Nanita SC, Cooks RG, Schlosser G, Vekey K (2003) Amino acid clusters formed by sonic spray ionization. Anal Chem 75:1514–1523CrossRefGoogle Scholar
  54. Vandenbussche S, Vandenbussche G, Reisse J, Bartik K (2006) Do serine octamers exist in solutions? Relevance of this question in the context of the origin of homochirality on earth. Eur J Org Chem 2006:3069–3073CrossRefGoogle Scholar
  55. Wang XB, Wang LS (2008) Development of a low-temperature photoelectron spectroscopy instrument using an electrospray ion source and a cryogenically controlled ion trap. Rev Sci Instrum 79:073108CrossRefGoogle Scholar
  56. Zamith S, Labastie P, L’Hermite JM (2013) Heat capacities of mass selected deprotonated water clusters. J Chem Phys 138:034304Google Scholar
  57. Zehnacker A (2014) Chirality effects in gas-phase spectroscopy and photophysics of molecular and ionic complexes: contribution of low and room temperature studies. Int Rev Phys Chem 33:151–207CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Graduate School of ScienceOsaka Prefecture UniversityOsakaJapan

Personalised recommendations