Advertisement

Origins of Life and Evolution of Biospheres

, Volume 48, Issue 2, pp 201–211 | Cite as

Synthesis of β-Peptide Standards for Use in Model Prebiotic Reactions

  • Jay G. Forsythe
  • Sloane L. English
  • Rachel E. Simoneaux
  • Arthur L. Weber
Prebiotic Chemistry

Abstract

A one-pot method was developed for the preparation of a series of β-alanine standards of moderate size (2 to ≥12 residues) for studies concerning the prebiotic origins of peptides. The one-pot synthesis involved two sequential reactions: (1) dry-down self-condensation of β-alanine methyl ester, yielding β-alanine peptide methyl ester oligomers, and (2) subsequent hydrolysis of β-alanine peptide methyl ester oligomers, producing a series of β-alanine peptide standards. These standards were then spiked into a model prebiotic product mixture to confirm by HPLC the formation of β-alanine peptides under plausible reaction conditions. The simplicity of this approach suggests it can be used to prepare a variety of β-peptide standards for investigating differences between α- and β-peptides in the context of prebiotic chemistry.

Keywords

Origins of life Prebiotic β-peptide β-amino acid β-alanine β-alanine methyl ester Oligomerization 

Notes

Acknowledgements

The authors thank Esther Varon for technical assistance and manuscript reviewers for beneficial comments. This work was supported by NSF and the NASA Astrobiology Program under the NSF Center for Chemical Evolution (CHE-1504217) as well as the College of Charleston (Summer Undergraduate Research Fellowship to SLE; start-up funds to JGF).

References

  1. Bodansky M, Bodansky A (1994a) Hydrolysis. In: The practice of peptide synthesis, Springer, Heidelberg, pp. 148–152.  https://doi.org/10.1007/978-3-642-85055-4_16
  2. Bodansky M, Bodansky A (1994b) Blocking of the α-carboxyl group. In: The practice of peptide synthesis, Springer, Heidelberg, pp. 28–46.  https://doi.org/10.1007/978-3-642-85055-4_3
  3. Brückner AM, Chakraborty P, Gellman SH, Diederichsen U (2003) Molecular architecture with functionalized β-peptide helices. Angew Chem Int Ed 42:4395–4399.  https://doi.org/10.1002/anie.200351871 CrossRefGoogle Scholar
  4. Bush MF, Campuzano IDG, Robinson CV (2012) Ion mobility mass spectrometry of peptide ions: effects of drift gas and calibration strategies. Anal Chem 84:7124–7130.  https://doi.org/10.1021/ac3014498 CrossRefPubMedGoogle Scholar
  5. Byler DM, Susi H (1986) Examination of the secondary structure of proteins by deconvoluted FTIR spectra. Biopolymers 25:469–487.  https://doi.org/10.1002/bip.360250307 CrossRefPubMedGoogle Scholar
  6. Chakraborty P, Diederichsen U (2005) Three-dimensional organization of helices: design principles for nucleobase-functionalized beta-peptides. Chem Eur J 11:3207–3216.  https://doi.org/10.1002/chem.200500004 CrossRefPubMedGoogle Scholar
  7. Cheng RP, Gellman SH, DeGrado WF (2001) β-peptides: from structure to function. Chem Rev 101:3219–3232.  https://doi.org/10.1021/cr000045i CrossRefPubMedGoogle Scholar
  8. Dado GP, Gellman SH (1994) Intramolecular hydrogen bonding in derivatives of β-alanine and γ-amino butyric acid: model studies for the folding of unnatural polypeptide backbones. J Am Chem Soc 116:1054–1062.  https://doi.org/10.1021/ja00082a029
  9. Danger G, Plasson R, Pascal R (2012) Pathways for the formation and evolution of peptides in prebiotic environments. Chem Soc Rev 41:5416–5429.  https://doi.org/10.1039/c2cs35064e CrossRefPubMedGoogle Scholar
  10. DeGrado WF, Schneider JP, Hamuro Y (1999) The twists and turns of beta-peptides. J Pept Res 54:206–217.  https://doi.org/10.1034/j.1399-3011.1999.00131.x CrossRefPubMedGoogle Scholar
  11. Del Borgo MP, Mechler AI, Traore D, Forsyth C, Wilce JA, Wilce MC, Aguilar M-I, Perlmutter P (2013) Supramolecular self-assembly of N-acetyl-capped β-peptides leads to nano- to macroscale fiber formation. Angew Chem Int Ed 52:8266–8270.  https://doi.org/10.1002/anie.201303175 CrossRefGoogle Scholar
  12. Elsila JE, Aponte JC, Blackmond DG, Burton AS, Dworkin JP, Glavin DP (2016) Meteoritic amino acids: diversity in compositions reflects parent body histories. ACS Cent Sci 2:370–379.  https://doi.org/10.1021/acscentsci.6b00074 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Forsythe JG, Weber AL (2017) Prebiotic peptide (amide) bond synthesis accelerated by glycerol and bicarbonate under neutral to alkaline dry-down conditions. Abstract # 4064, XVIIIth International Conference on the Origin of Life: July 16–21, 2017, San Diego, California. (LPI Contrib. No. 1967). https://www.hou.usra.edu/meetings/issol2017/
  14. Forsythe JG, Yu S-S, Mamajanov I, Grover MA, Krishnamurthy R, Fernández FM, Hud NV (2015a) Ester-mediated amide bond formation driven by wet–dry cycles: a possible path to polypeptides on the prebiotic earth. Angew Chem Int Ed 54:9871–9875.  https://doi.org/10.1002/anie.201503792 CrossRefGoogle Scholar
  15. Forsythe JG, Petrov AS, Walker CA, Allen SJ, Pellissier JS, Bush MF, Hud NV, Fernández FM (2015b) Collision cross section calibrants for negative ion mode traveling-wave ion mobility-mass spectrometry. Analyst 140:6853–6861.  https://doi.org/10.1039/C5AN00946D CrossRefPubMedGoogle Scholar
  16. González LJ, Shimizu T, Satomi Y, Betancourt L, Besada V, Padrón G, Orlando R, Shirasawa T, Shimonishi Y, Takao T (2000) Differentiating alpha- and beta-aspartic acids by electrospray ionization and low-energy tandem mass spectrometry. Rapid Commun Mass Spectrom 14:2092–2102.  https://doi.org/10.1002/1097-0231(20001130)14:22<2092::AID-RCM137>3.0.CO;2-V CrossRefPubMedGoogle Scholar
  17. Gopalan RD, Del Borgo MP, Mechler AI, Perlmutter P, Aguilar M-I (2015) Geometrically precise building blocks: the self-assembly of β-peptides. Chem Biol 22:1417–1423.  https://doi.org/10.1016/j.chembiol.2015.10.005 CrossRefPubMedGoogle Scholar
  18. Hahn I-S, Wesdemiotis C (2003) Protonation thermochemistry of β-alanine: an evaluation of proton affinities and entropies determined by the extended kinetic method. Int J Mass Spectrom 222:465–479.  https://doi.org/10.1016/S1387-3806(02)01018-7 CrossRefGoogle Scholar
  19. Katchalski E (1951) Poly-α-amino acids. In: Anson ML, Edsall JT, Bailey K (eds) Advances in protein chemistry, vol 6. Academic Press, New York, pp 123–185.  https://doi.org/10.1016/S0065-3233(08)60503-3 CrossRefGoogle Scholar
  20. Kricheldorf H (2014) Solid state polycondensation. In: Kricheldorf H (ed) Polycondensation: history and new results. Springer, Heidelberg, pp 221–239.  https://doi.org/10.1007/978-3-642-39429-4_14 CrossRefGoogle Scholar
  21. Li J, Sha Y (2008) A convenient synthesis of amino acid methyl esters. Molecules 13:1111–1119.  https://doi.org/10.3390/molecules13051111 CrossRefPubMedGoogle Scholar
  22. Liu R, Orgel LE (1997) Efficient oligomerization of negatively-charged β-amino acids at −20 °C. J Am Chem Soc 119:4791–4792.  https://doi.org/10.1021/ja9702529 CrossRefPubMedGoogle Scholar
  23. Liu R, Orgel LE (1998) Polymerization of β-amino acids in aqueous solution. Orig Life Evol Biosph 28:47–60.  https://doi.org/10.1023/A:1006580918298 CrossRefPubMedGoogle Scholar
  24. Meierhenrich UJ, Muñoz Car GM, Bredehöft JH, Jessberger EK, Thiemann WH-P (2004) Identification of diamino acids in the Murchison meteorite. Proc Natl Acad Sci U S A 101:9182–9186.  https://doi.org/10.1073/pnas.0403043101 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Parker ET, Cleaves HJ, Dworkin JP, Glavin DP, Callahan M, Aubrey A, Lazcano A, Bada JL (2011) Primordial synthesis of amines and amino acids in a 1958 Miller H2S-rich spark discharge experiment. Proc Natl Acad Sci U S A 108:5526–5531.  https://doi.org/10.1073/pnas.1019191108
  26. Rachele JR (1963) The methyl esterification of amino acids with 2,2-dimethoxypropane and aqueous hydrogen chloride. J Org Chem 28:2898–2898.  https://doi.org/10.1021/jo01045a515 CrossRefGoogle Scholar
  27. Ring D, Wolman Y, Friedmann N, Miller SL (1972) Prebiotic synthesis of hydrophobic and protein amino acids. Proc Natl Acad Sci U S A 69:765–768.  https://doi.org/10.1073/pnas.69.3.765 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Rode BM (1999) Peptides and the origin of life. Peptides 20:773–786.  https://doi.org/10.1016/S0196-9781(99)00062-5 CrossRefPubMedGoogle Scholar
  29. Rodriguez-Garcia M, Surman AJ, Cooper GJT, Suarez-Marina I, Hosni Z, Lee MP, Cronin L (2015) Formation of oligopeptides in high yield under simple programmable conditions. Nat Commun 6:8385.  https://doi.org/10.1038/ncomms9385 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Weber AL (2005) Aqueous synthesis of peptide thioesters from amino acids and a thiol using 1,1′-carbonyldiimidazole. Orig Life Evol Biosph 35:421–427.  https://doi.org/10.1007/s11084-005-4070-0 CrossRefPubMedGoogle Scholar
  31. Weber AL, Orgel LE (1978) The formation of peptides from the 2′(3′)-glycyl ester of a nucleotide. J Mol Evol 11:189–198.  https://doi.org/10.1007/BF01734480 CrossRefPubMedGoogle Scholar
  32. Wolman Y, Haverland WJ, Miller SL (1972) Nonprotein amino acids from spark discharges and their comparison with the Murchison meteorite amino acids. Proc Natl Acad Sci U S A 69:809–811.  https://doi.org/10.1073/pnas.69.4.809 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Yu S-S, Solano MD, Blanchard MK, Soper-Hopper MT, Krishnamurthy R, Fernández FM, Hud NV, Schork FJ, Grover MA (2017) Elongation of model prebiotic proto-peptides by continuous monomer feeding. Macromolecules 50:9286–9294.  https://doi.org/10.1021/acs.macromol.7b01569 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Jay G. Forsythe
    • 1
  • Sloane L. English
    • 1
  • Rachel E. Simoneaux
    • 1
  • Arthur L. Weber
    • 2
  1. 1.Department of Chemistry and BiochemistryCollege of CharlestonCharlestonUSA
  2. 2.Ames Research CenterSETI InstituteMoffett FieldUSA

Personalised recommendations