Advertisement

Origins of Life and Evolution of Biospheres

, Volume 48, Issue 1, pp 141–158 | Cite as

Survival and Adaptation of the Thermophilic Species Geobacillus thermantarcticus in Simulated Spatial Conditions

  • Paola Di DonatoEmail author
  • Ida Romano
  • Vincenza Mastascusa
  • Annarita Poli
  • Pierangelo Orlando
  • Mariagabriella Pugliese
  • Barbara Nicolaus
Astrobiology

Abstract

Astrobiology studies the origin and evolution of life on Earth and in the universe. According to the panspermia theory, life on Earth could have emerged from bacterial species transported by meteorites, that were able to adapt and proliferate on our planet. Therefore, the study of extremophiles, i.e. bacterial species able to live in extreme terrestrial environments, can be relevant to Astrobiology studies. In this work we described the ability of the thermophilic species Geobacillus thermantarcticus to survive after exposition to simulated spatial conditions including temperature’s variation, desiccation, X-rays and UVC irradiation. The response to the exposition to the space conditions was assessed at a molecular level by studying the changes in the morphology, the lipid and protein patterns, the nucleic acids. G. thermantarcticus survived to the exposition to all the stressing conditions examined, since it was able to restart cellular growth in comparable levels to control experiments carried out in the optimal growth conditions. Survival was elicited by changing proteins and lipids distribution, and by protecting the DNA’s integrity.

Keywords

Thermophiles Space conditions adaptation Space conditions survival 

Notes

Acknowledgements

The authors thank Mrs. Maria Cristina Del Barone of IPCB-LaMEST laboratory of C.N.R. for SEM analysis.

References

  1. Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein using the principles of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  2. Collins M, Jones D (1981) Distribution of isoprenoid Quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45(2):316–354PubMedPubMedCentralGoogle Scholar
  3. Das A, Hugenholtz J, Van Halbeek H, Ljungdahl L (1989) Structure and function of a menaquinone involved in electron transport in membranes of Clostridium thermoautotrophicum and Clostridium thermoaceticum. J Bacteriol 171(11):5823–5829CrossRefPubMedPubMedCentralGoogle Scholar
  4. Davis BJ (1964) Disc electrophoresis. II. Method and application to human serum proteins. Ann N Y Acad Sci 121:404–427CrossRefPubMedGoogle Scholar
  5. Di Cristo C, Di Donato P, Palumbo A, d'Ischia M, Paolucci M, Di Cosmo A (2010) Steroidogenesis in the brain of Sepia officinalis and Octopus vulgaris. Front Biosci (Elite edition). doi: 10.2741/127
  6. Finore I, Orlando P, Di Donato P, Leone L, Nicolaus B, Poli A (2016) Nesterenkonia aurantiaca sp nov., an alkaliphilic actinobacterium isolated from Antarctica. Int J Syst Evol Microbiol. doi: 10.1099/ijsem.0.000917
  7. Horneck G, Rettberg P, Reitz G, Wehner J, Eschweiler U, Strauch K, Panitz C, Starke V, Baumstark-Khan C (2001) Protection of bacterial spores in space, a contribution to the discussion on panspermia. Orig Life Evol Biosph 31:527–547CrossRefPubMedGoogle Scholar
  8. Horneck G, Klaus DM, Mancinelli RL (2010) Space microbiology. Microbiol Mol Biol Rev 74:121–156CrossRefPubMedPubMedCentralGoogle Scholar
  9. Horneck G, Walter N, Westall F, Grenfell JL, Martin W, Gomez F, Leuko S, Lee N, Onofri S, Tsiganis K, Saladino R, Pilat-Lohinger E, Palomba E, Harrison J, Rull F, Muller C, Strazzulla G, Brucato JR, Rettberg P, Capria MT (2016) AstRoMap European Astrobiology Roadmap. Astrobiology. doi: 10.1089/ast.2015.1441
  10. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefPubMedGoogle Scholar
  11. Lama L, Calandrelli V, Gambacorta A, Nicolaus B (2004) Purification and characterization of thermostable xylanase and β-xylosidase by the thermophilic bacterium Bacillus thermantarcticus. Res Microbiol 155:283–289CrossRefPubMedGoogle Scholar
  12. Lama L, Poli A, Nicolaus B (2012) Geobacillus thermantarcticus as source of biotechnological thermozymes ans exopolysaccharides: a rewiew. Curr Trends Microbiol 8:1–12Google Scholar
  13. Leuko S, Domingos C, Parpart A, Reitz G, Rettberg P (2015) The survival and resistance of Halobacterium salinarum NRC-1, Halococcus hamelinensis, and Halococcus morrhuae to simulated outer space solar radiation. Astrobiology 15(1). doi: 10.1089/ast.2015.1310
  14. Mancinelli RL, White MR, Rothschild LJ (1998) BIOPAN-survival I: exposure of the osmophiles Synechococcus sp. (Naegli) and Haloarcula sp. to the space environment. Adv Space Res 22:327–334CrossRefGoogle Scholar
  15. Mastascusa V, Romano I, Di Donato P, Poli A, Della Corte V, Rotundi A, Bussoletti E, Quarto M, Pugliese M, Nicolaus B (2014) Extremophiles survival to simulated space conditions: an astrobiology model study. Orig Life Evol Biosph. doi: 10.1007/s11084-014-9397-y
  16. Mathis R, Ackermann M (2016) Response of single bacterial cells to stress gives rise to complex history dependence at the population level. PNAS 113(15):4224–4229CrossRefPubMedPubMedCentralGoogle Scholar
  17. Moissl-Eichinger C, Charles Cockell C, Rettberg P (2016) Venturing into new realms? Microorganisms in space FEMS Microbiology Reviews. doi: 10.1093/femsre/fuw015
  18. Nicholson WL, Schuerger AC, Setlow P (2005) The solar UV environment and bacterial spore UV resistance: considerations for earth-to-Mars transport by natural processes and human spaceflight. Mutat Res 571:249–264CrossRefPubMedGoogle Scholar
  19. Nicolaus B, Poli A, Di Donato P, Romano I, Laezza G, Gioiello A, Ulgiati S, Fratianni F, Nazzaro F, Orlando P, Dumontet S (2016) Pb2+ effects on growth, lipids, and protein and DNA profiles of the thermophilic bacterium Thermus thermophilus. Microorganisms 4:45. doi: 10.3390/microorganisms4040045 CrossRefPubMedCentralGoogle Scholar
  20. Poli A, Romano I, Cordella P, Orlando P, Nicolaus B, Ceschi Berrini C (2009) Anoxybacillus thermarum sp. nov., a novel thermophilic bacterium isolated from thermal mud in Euganean hot springs, Abano Terme, Italy. Extremophiles 13:867–874CrossRefPubMedGoogle Scholar
  21. Poli A, Laezza G, Gul-Guven R, Orlando P, Nicolaus B (2011) Geobacillus galactosidasius sp. nov., a new thermophilic galactosidase-producing bacterium isolated from compost. Syst Appl Microbiol 34:419–423CrossRefPubMedGoogle Scholar
  22. Versalovic J, Schneider M, De Bruijn FJ, Lupski JR (1994) Genomic fingerprint of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 5:25–40Google Scholar
  23. Yildiz SY, Anzelmo G, Ozer T, Radchenkova N, Genc S, Di Donato P, Nicolaus B, Toksoy Oner E, Kambourova M (2014) Brevibacillus themoruber: a promising microbial cell factory for exopolysaccharide production. J Appl Microbiol. doi: 10.1111/jam.12362
  24. Zagorski ZP (2007) Question 2: relation of panspermia-hypothesis to astrobiology. Orig Life Evol Biosph. doi: 10.1007/s11084-007-9074-5

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Consiglio Nazionale delle Ricerche (C.N.R.)Institute of Biomolecular Chemistry ICB-CNRNaplesItaly
  2. 2.Department of Science and TechnologyUniversity of Naples “Parthenope”NaplesItaly
  3. 3.Consiglio Nazionale delle Ricerche (C.N.R.)Institute of Applied Sciences and Intelligent Systems ISASI-CNRNaplesItaly
  4. 4.Department of Physics “Ettore Pancini”University of Naples Federico IINaplesItaly

Personalised recommendations