Origins of Life and Evolution of Biospheres

, Volume 47, Issue 3, pp 281–296 | Cite as

Walking over 4 Gya: Chemical Evolution from Photochemistry to Mineral and Organic Chemistries Leading to an RNA World



Here we overview the chemical evolution of RNA molecules from inorganic material through mineral-mediated RNA formation compatible with the plausible early Earth environments. Pathways from the gas-phase reaction to the formation of nucleotides, activation and oligomerization of nucleotides, seem to be compatible with specific environments. However, how these steps interacted is not clear since the chemical conditions are frequently different and can be incompatible between them; thus the products would have migrated from one place to another, suitable for further chemical evolution. In this review, we summarize certain points to scrutinize the RNA World hypothesis.


Photochemistry Mineral catalysis RNA world RNA bricks Hadean environment Hydrothermal sites Prebiotic chemistry 



This study was supported by the Bilateral Joint Research Projects/Seminars between the Japan Society for the Promotion of Science (JSPS) and the Centre National de la Recherche Scientifique (CNRS) in 2015-2017, and the JSPS KAKENHI Grant Numbers JP15H01069 in 2015-2017 and JP15K12144 in 2015-2017.

We are grateful to Anne-Lise Haenni for English improvement of the manuscript.


  1. Abramov O, Mojzsis SJ (2016) Thermal effects of impact bombardments on Noachian Mars. Earth Plant Sci Lett 442:108–120CrossRefGoogle Scholar
  2. Agmon I (2009) The dimeric proto-ribosome: structural details and possible implications on the origin of life. Int J Mol Sci 10:2921–2934PubMedPubMedCentralCrossRefGoogle Scholar
  3. Agmon I (2016) Could a proto-ribosome emerge spontaneously in the prebiotic world? Molecules 21:1701. doi: 10.3390/molecules21121701 CrossRefGoogle Scholar
  4. Akouche M, Jaber M, Zins E-L, Maurel M-C, Lambert J-F, Georgelin T (2016) Thermal behavior of d-ribose adsorbed on silica: effect of inorganic salt coadsorption and significance for prebiotic chemistry. Chem Eur J 22:15834–15846PubMedCrossRefGoogle Scholar
  5. Allègre CJ, Manhès G, Göpel C (1995) The age of the earth. Geochim Cosmochim Acta 59:1445–1456CrossRefGoogle Scholar
  6. Barghoorn ES, Schopf JW (1966) Microorganisms three billion years old from the precambrian of south africa. Science 152:758–763PubMedCrossRefGoogle Scholar
  7. Bridson PK, Orgel LE (1980) Catalysis of accurate poly(C)-directed synthesis of 3′-5′-linked oligoguanylates by Zn2+. J Mol Biol 144:567–577PubMedCrossRefGoogle Scholar
  8. Britvin SN, Murasko MN, Vapnik Y, Polekhovsky YS, Krivovichev SV (2015) Earth’s phosphides in Levant and insights into the source of archean prebiotic phosphorus. Sci Rep 5:8355PubMedPubMedCentralCrossRefGoogle Scholar
  9. Callahan MP, Smith KE, Cleaves HJ, Ruzickad J, Sterna JC, Glavina DP, Houseb CH, Dworkin JP (2011) Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proc Natl Acad Sci U S A 108:13995–13998PubMedPubMedCentralCrossRefGoogle Scholar
  10. Cech TR (2000) The ribosome is a ribozyme. Science 289:878–879PubMedCrossRefGoogle Scholar
  11. Cermakian N, Cedergren R (1998) Modified nucleosides always were: an evolutionary model. In: Grosjean H, Benne R (eds) Modification and editing of RNA. ASM Press, Washington DC, pp 535–541CrossRefGoogle Scholar
  12. Costanzo G, Saladino R, Crestini C, Ciciriello F, Di Mauro E (2007) Nucleoside phosphorylation by phosphate minerals. J Biol Chem 282:16729–16735PubMedCrossRefGoogle Scholar
  13. Costanzo G, Pino S, Ciciriello F, Mauro D (2009) Generation of long RNA chains in water. J Biol Chem 284:33206–33216PubMedPubMedCentralCrossRefGoogle Scholar
  14. Da Silva L, Maurel M-C, Deamer D (2015) Salt-promoted synthesis of RNA-like molecules in simulated hydrothermal conditions. J Mol Evol 80:86–97PubMedCrossRefGoogle Scholar
  15. Delan-Forino C, Maurel M-C, Torchet C (2011) Replication of avocado sunblotch viroid in the yeast Saccharomyces cerevisiae. J Virol 85:3229–3238PubMedPubMedCentralCrossRefGoogle Scholar
  16. Diener TO (1989) Circular RNAs: relics of precellular evolution? Proc Natl Acad Sci U S A 86:9370–9374PubMedPubMedCentralCrossRefGoogle Scholar
  17. Ding PZ, Kawamura K, Ferris JP (1996) Oligomerization of uridine phosphorimidazolides on montmorillonite: a model for the prebiotic synthesis of RNA on minerals. Origins Life Evol Biosph 27:107–118Google Scholar
  18. El-Murr N, Maurel M-C, Rihova M, Vergne J, Hervé G, Kato M, Kawamura K (2012) Behavior of a hammerhead ribozyme in aqueous solution at medium to high temperatures. Naturwissenschaften 99(9):731–738Google Scholar
  19. Ertem G, Ferris JP (1996) Synthesis of RNA oligomers on heterogeneous templates. Nature 379:238–240PubMedCrossRefGoogle Scholar
  20. Ertem G, Ferris JP (1998) Formation of RNA oligomers on montmorillonite: site of catalysis. Orig Life Evol Biosph 28:485–499PubMedCrossRefGoogle Scholar
  21. Ferris JP (1979) Organic chemistry on titan. Rev Geophys 17:1923–1933CrossRefGoogle Scholar
  22. Ferris JP (2002) Montmorillonite catalysis of 30-50 mer oligonucleotides: laboratory demonstration of potential steps in the origin of the RNA world. Orig Life Evol Biosph 32:311–332PubMedCrossRefGoogle Scholar
  23. Ferris JP, Chen CT (1975) Chemical evolution. XXVI. Photochemistry of methane, nitrogen, and water mixtures as a model for the atmosphere of the primitive earth. J Am Chem Soc 97:2962–29676PubMedCrossRefGoogle Scholar
  24. Ferris JP, Ertem G (1992) Oligomerization of ribonucleotides on montmorillonite: reaction of the 5′-phosphorimidazolide of adenosine. Science 257:1387–1389PubMedCrossRefGoogle Scholar
  25. Ferris JP, Hagan WJ Jr (1986) The adsorption and reaction of adenine-nucleotides on montmorillonite. Orig Life Evol Biosph 17:69–84PubMedCrossRefGoogle Scholar
  26. Ferris JP, Joshi PC (1979) Chemical evolution. 33. Photochemical decarboxylation of orotic acid, orotidine, and orotidine 5′-phosphate. J Org Chem 44:2133–2137CrossRefGoogle Scholar
  27. Ferris JP, Kamaluddin (1989) Oligomerization reactions of deoxyribonucleotides on montmorillonite clay - the effect of mononucleotide structure on phosphodiester bond formation. Orig Life Evol Biosph 19:609–619PubMedCrossRefGoogle Scholar
  28. Ferris JP, Morimoto JY (1981) Irradiation of NH3 CH4 mixtures as a model of photochemical processes in the Jovian planets and titan. Icarus 48:118–126CrossRefGoogle Scholar
  29. Ferris JP, Orgel LE (1965) Aminomalononitrile and 4-amino-5-cyanoimidazole in hydrogen cyanide polymerization and adenine synthesis. J Am Chem Soc 87:4976–4977PubMedCrossRefGoogle Scholar
  30. Ferris JP, Sanchez RA, Orgel LE (1968) Studies in prebiotic synthesis: III. Synthesis of pyrimidines from cyanoacetylene and cyanate. J Mol Biol 33:693–704PubMedCrossRefGoogle Scholar
  31. Ferris JP, Kuder JE, Catalano AW (1969) Photochemical reactions and the chemical evolution of purines and nicotinamide derivative. Science 166:765–766PubMedCrossRefGoogle Scholar
  32. Ferris JP, Joshi PC, Edelson EH, Lawless JG (1978) HCN: a plausible source of purines, pyrimidines and amino acids on the primitive earth. J Mol Evol 11:293–311PubMedCrossRefGoogle Scholar
  33. Ferris JP, Edelson EH, Mount NM, Sullican AE (1979) The effect of clays on the oligomerization of HCN. J Mol Evol 13:317–330PubMedCrossRefGoogle Scholar
  34. Ferris JP, Yanagawa H, Hagan WJ Jr (1984) The prebiotic chemistry of nucleotides. Orig Life Evol Biosph 14:99–106CrossRefGoogle Scholar
  35. Ferris JP, Huang C-H, Hagan WJ Jr (1988) Montmorillonite: a multifunctional mineral catalyst for the prebiological formation of phosphate esters. Orig Life Evol Biosph 18:121–133PubMedCrossRefGoogle Scholar
  36. Ferris JP, Ertem G, Agarwal V (1989a) Mineral catalysis of the formation of dimers of 5′-AMP in aqueous-solution - the possible role of montmorillonite clays in the prebiotic synthesis of RNA. Orig Life Evol Biosph 19:165–178PubMedCrossRefGoogle Scholar
  37. Ferris JP, Kamaluddin, Ertem G (1989b) Oligomerization reactions of deoxyribonucleotides on montmorillonite clay - the effect of mononucleotide structure, phosphate activation and montmorillonite composition on phosphodiester bond formation. Orig Life Evol Biosph 20:279–291CrossRefGoogle Scholar
  38. Ferris JP, Hill AR Jr, Liu R, Orgel LE (1996) Synthesis of long prebiotic oligomers on mineral surfaces. Nature 381:59–61PubMedCrossRefGoogle Scholar
  39. Friedmann N, Miller SL, Sanchez RA (1971) Primitive earth synthesis of nicotinic acid derivatives. Science 171:1026–1027PubMedCrossRefGoogle Scholar
  40. Fuller WD, Sanchez RA, Orgel LE (1972) Studies in prebiotic synthesis: VI. Synthesis of purine nucleosides J Mol Biol 67:25–33PubMedGoogle Scholar
  41. Gabel NW, Ponnamperuma C (1967) Model for origin of monosaccharides. Nature 216:453–455PubMedCrossRefGoogle Scholar
  42. Georgelin T, Jaber M, Fournier F, Laurent G, Costa-Torro F, Maurel M-C, Lambert J-F (2015) Stabilization of ribofuranose by a mineral surface. Carbohydr Res 402:241–244PubMedCrossRefGoogle Scholar
  43. Gilbert W (1986) Origins of life - the RNA world. Nature 319:618CrossRefGoogle Scholar
  44. Gough DO (1981) Solar interior structure and luminosity variations. Solar Phys 74:21–34CrossRefGoogle Scholar
  45. Grotzinger JP, Kasting JF (1993) New constraints on precambrian ocean composition. J Geol 101:235–243PubMedCrossRefGoogle Scholar
  46. Gull M, Mojica MA, Fernandez FM, Gaul DA, Orlando TM, Liotta CL, Pase MA (2015) Nucleoside phosphorylation by the mineral schreibersite. Sci Rep 5:17198PubMedPubMedCentralCrossRefGoogle Scholar
  47. Holm NG, Dumont M, Ivarsson M, Konn C (2006) Alkaline fluid circulation in ultramafic rocks and formation of nucleotide constituents: a hypothesis. Geochem Trans 7:7PubMedPubMedCentralCrossRefGoogle Scholar
  48. Huang W, Ferris JP (2002) Synthesis of 35–40 mers of RNA oligomers from unblocked monomers. A simple approach to the RNA world. Chem Comm 1458-1459Google Scholar
  49. Hud NV, Cafferty BJ, Krishnamurthy R, Williams LD (2013) The origin of RNA and “my grandfather’s axe”. Chem Biol 20:466–474PubMedCrossRefGoogle Scholar
  50. Inoue T, Orgel LE (1983) A nonenzymatic RNA polymerase model. Science 219:859–862PubMedCrossRefGoogle Scholar
  51. Jørgensen UG, Appel PWU, Hatsukawa Y, Frei R, Oshima M, Toh Y, Kimura A (2009) The earth–moon system during the late heavy bombardment period – geochemical support for impacts dominated by comet. Icarus 204:368–380CrossRefGoogle Scholar
  52. Joshi PC, Pitsch S, Ferris JP (2000) Homochiral selection in the montmorillonite-catalyzed and uncatalyzed prebiotic synthesis of RNA. Chem Comm 2497-2498Google Scholar
  53. Joshi PC, Pitsch S, Ferris JP (2007) Selectivity of montmorillonite catalyzed prebiotic reactions of D, L-nucleotides. Orig Life Evol Biosph 37:3–26PubMedCrossRefGoogle Scholar
  54. Joyce GF (1986) RNA evolution and the origins of life. Nature 338:217–224CrossRefGoogle Scholar
  55. Joyce GF, Schwartz AW, Miller SL, Orgel LE (1987) The case for an ancestral genetic system involving simple analogues of the nucleotides. Proc Natl Acad Sci U S A 84:4398–4402PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kaddour H, Vergne J, Hervé G, Maurel M-C (2011) High-pressure analysis of a hammerhead ribozyme from chrysanthemum chlorotic mottle viroid reveals two different populations of self-cleaving molecule. FEBS J 278:3739–3747PubMedCrossRefGoogle Scholar
  57. Kanavarioti A, Monnard PA, Deamer DW (2001) Eutectic phases in ice facilitate nonenzymatic nucleic acid synthesis. Astrobiology 1:271–281PubMedCrossRefGoogle Scholar
  58. Kasting JF (1993) Earth’s early atmosphere. Science 259:920–926PubMedCrossRefGoogle Scholar
  59. Kasting JF, Pollack JB (1984) Effects of high CO2 levels on surface temperature and atmospheric oxidation state of the early earth. J Atom Chem 1:403–428CrossRefGoogle Scholar
  60. Kawamura K (2012) Drawbacks of the ancient RNA-based life-like system under primitive earth conditions. Biochimie 94:1441–1450PubMedCrossRefGoogle Scholar
  61. Kawamura K, Ferris JP (1994) Kinetic and mechanistic analysis of dinucleotide and oligonucleotide formation from the 5′-phosphorimidazolide of adenosine on Na+-montmorillonite. J Am Chem Soc 116:7564–7572PubMedCrossRefGoogle Scholar
  62. Kawamura K, Ferris JP (1999) Clay catalysis of oligonucleotide formation: kinetics of the reaction of the 5′-phosphorimidazolides of nucleotides with the non-basic heterocycles uracil and hypoxanthine. Orig Life Evol Biosph 29:563–591PubMedCrossRefGoogle Scholar
  63. Kawamura K, Maeda J (2008) Kinetics and activation parameter analysis for the prebiotic oligocytidylate formation on Na+-montmorillonite at 0-100 °C. J Phys Chem A 112:8015–8023PubMedCrossRefGoogle Scholar
  64. Kim HJ, Ricardo A, Illangkoon HI, Kim MJ, Carrigan MA, Frye F, Benner SA (2011) Synthesis of carbohydrates in mineral-guided prebiotic cycles. J Am Chem Soc 133:9457–9468PubMedCrossRefGoogle Scholar
  65. Kolesnikov MP, Kritsky MS (2001) Study of chemical structure and of photochemical activity of abiogenic flavin pigment. J Evol Biochem Physiol 37:507–514CrossRefGoogle Scholar
  66. Kopetzki D, Antonietti M (2011) Hydrothermal formose reaction. New J Chem 35:1787–1794CrossRefGoogle Scholar
  67. Krupkin M, Matzov D, Tang H, Metz M, Kalaora R, Belousoff MJ, Zimmerman E, Bashan A, Yonath A (2011) A vestige of a prebiotic bonding machine is functioning within the contemporary ribosome. Phi. Trans R Soc B 366:2972–2978CrossRefGoogle Scholar
  68. Lambert JB, Gurusamy-Thangavelu SA, Ma K (2010) The silicate-mediated formose reaction: bottom-up synthesis of sugar silicates. Science 327:984–986PubMedCrossRefGoogle Scholar
  69. Larralde R, Robertson MP, Miller SL (1995) Rates of decomposition of ribose and other sugars: implications for chemical evolution. Proc Natl Acad Sci U S A 92:8158–8160PubMedPubMedCentralCrossRefGoogle Scholar
  70. Latifi A, Bernard C, Da Silva L, Andéol Y, Elleuch A, Risoul V, Vergne J, Maurel M-C (2016) Replication of avocado sunblotch viroid in the cyanobacterium Nostoc sp. PCC 7120. J Plant path Microbiol 7:341. doi: 10.4172/2157-7471.1000341 Google Scholar
  71. Leclerc F, Zaccai G, Vergne J, Řìhovà M, Martel A, Maurel M-C (2016) Self-assembly controls self-cleavage of HHR from ASBVd (−) : a combined sans and modeling study. Sci Rep 6:30287. doi: 10.1038/srep30287 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Lohrmann R (1977) Formation of nucleoside 5′-phosphorimidates under potentially prebiological conditions. J Mol Evol 10:137–154PubMedCrossRefGoogle Scholar
  73. Lohrmann R, Orgel LE (1973) Prebiotic activation processes. Nature 244:418–420PubMedCrossRefGoogle Scholar
  74. Lohrmann R, Orgel LE (1980) Efficient catalysis of polycytidylic acid-directed oligoguanylate formation by Pb2+. J Mol Biol 142:555–567PubMedCrossRefGoogle Scholar
  75. Maizels N, Weiner AM (1993) In: Gesteland RF, Atkins JF (eds) The RNA world. Cold Spring Harbor Lab Press, Plainview, pp 577–602Google Scholar
  76. Maizels N, Weiner AM (1994) Phylogeny from function: evidence from the molecular fossil record that tRNA originated in replication, not translation. Proc Natl Acad Sci U S A 91:6729–6734PubMedPubMedCentralCrossRefGoogle Scholar
  77. Marchi S, Bottke WF, Elkins-Tanton LT, Bierhaus M, Wuennemann K, Morbidelli A, Kring DA (2014) Widespread mixing and burial of Earth’s Hadean crust by asteroid impacts. Nature 511:578–582PubMedCrossRefGoogle Scholar
  78. Maruyama S, Ikoma M, Genda H, Hirose K, Yokoyama T, Santosh M (2013) The naked planet earth: most essential pre-requisite for the origin and evolution of life. Geosci Front 4:141–165CrossRefGoogle Scholar
  79. Miyakawa S, Ferris JP (2003) Sequence and regioselectivity in the montmorillonite-catalyzed synthesis of RNA. J Am Chem Soc 125:8202–8208PubMedCrossRefGoogle Scholar
  80. Mizuno T, Weiss A (1974) Synthesis and utilization of formose sugars. Adv Carbohyd Chem Biochem 29:173–227CrossRefGoogle Scholar
  81. Mojzsis SJ, Arrhenius G, McKeegan KD, Harrison TM, Nutman AP, Friend CRL (1996) Evidence for life on earth before 3,800 million years ago. Nature 384:55–59PubMedCrossRefGoogle Scholar
  82. Mojzsis SJ, Harrison TM, Pidgeon RT (2001) Oxygen-isotope evidence from ancient zircons for liquid water at the Earth's surface 4,300 Myr ago. Nature 409:178–181PubMedCrossRefGoogle Scholar
  83. Monnard PA, Kanavarioti A, Deamer DW (2003) Eutectic phase polymerization of activated ribonucleotide mixtures yields quasi-equimolar incorporation of purine and pyrimidine nucleobases. J Am Chem Soc 125:13734–13740PubMedCrossRefGoogle Scholar
  84. Morbidelli A, Marchi S, Bottke WF, Kring DA (2012) A sawtooth-like timeline for the first billion years of lunar bombardment. Earth Plant Sci Lett 355:144–151CrossRefGoogle Scholar
  85. Morse JW, Mackenzie FT (1998) Hadean ocean carbonate geochemistry. Aquatic Geochem 4:301–319CrossRefGoogle Scholar
  86. Nutman AP, Bennet VC, Friend CRL, Van Kranendonk M, Chivas AR (2016) Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature 537:535–538PubMedCrossRefGoogle Scholar
  87. Orgel LE, Lohrmann R (1974) Prebiotic chemistry and nucleic acid replication. Acc Chem Res 7:368–377CrossRefGoogle Scholar
  88. Oró J (1961) Mechanism of synthesis of adenine from hydrogen cyanide under possible primitive earth conditions. Nature 191:1193–1194PubMedCrossRefGoogle Scholar
  89. Pasek MA, Lauretta DS (2005) Aqueous corrosion of phosphide minerals from iron meteorites: a highly reactive source of prebiotic phosphorus on the surface of the early earth. Astrobiology 5:515–535PubMedCrossRefGoogle Scholar
  90. Paytan A, Maclaughlin K (2007) The oceanic phosphrous cycle. Chem Rev 107:563–576PubMedCrossRefGoogle Scholar
  91. Peck WH, Valley JW, Wilde SA, Graham CM (2001) Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: ion microprobe evidence for high d18O continental crust and oceans in the early Archean. Geochim Cosmochim Acta 65:4215–4229CrossRefGoogle Scholar
  92. Pinheiro VB, Taylor AI, Cozens C, Abramov M, Renders M, Zhang S, Chapu JC, Wengel J, Peak-Chew S-Y, McLaughlin SH, Herdewijn P, Holliger P (2012) Synthetic genetic polymers capable of heredity and evolution. Science 336:341–344PubMedPubMedCentralCrossRefGoogle Scholar
  93. Ponnamperuma C, Shimoyama A, Friebele E (1982) Clay and the origin of life. Origins Life 12:9–40CrossRefGoogle Scholar
  94. Prabahar KJ, Ferris JP (1997) Adenine derivatives as phosphate-activating groups for the regioselective formation of 3′,5′-linked oligoadenylates on montmorillonite: possible phosphate-activating groups for the prebiotic synthesis of RNA. J Am Chem Soc 119:4330–4337PubMedCrossRefGoogle Scholar
  95. Prabahar KJ, Cole TD, Ferris JP (1994) Effect of phosphate activating group on oligonucleotide formation on montmorillonite: the regioselective formation of 3′,5′-linked oligoadenylates. J Am Chem Soc 116:10914–10920PubMedCrossRefGoogle Scholar
  96. Prieur B (2009) Phosphorylation of ribose in the presence of borate salts. Origins Life Evol Biosph 39:264–265Google Scholar
  97. Rao M, Odom DG, Oró J (1980) Clays in prebiological chemistry. J Mol Evol 15:317–331PubMedCrossRefGoogle Scholar
  98. Reid C, Orgel LE (1967) Model for origin of monosaccharides: synthesis of sugars in potentially prebiotic conditions. Nature 216:455PubMedCrossRefGoogle Scholar
  99. Reimann E, Zubay G (1999) Nucleoside phosphorylation: a feasible step in the prebiotic pathway to RNA. Orig Life Evol Biosph 29:229–247PubMedCrossRefGoogle Scholar
  100. Ricardo A, Carrigan MA, Olcott AN, Benner SA (2004) Borate minerals stabilize ribose. Science 303:196–196PubMedCrossRefGoogle Scholar
  101. Ryder G (2002) Mass flux in the ancient earth-moon system and benign implications for the origin of life on earth. J Geophys Res-Plan 107:E4Google Scholar
  102. Sagan C, Mullen G (1972) Earth and Mars: evolution of atmosphere and surface temperatures. Science 177:52–56PubMedCrossRefGoogle Scholar
  103. Saladino R, Ciambecchini U, Crestini C, Costanzo G, Negri R, Di Mauro E (2003) One-pot TiO2-catalyzed synthesis of nucleic bases and acyclonucleosides from formamide: implications for the origin of life. Chembiochem 4:514–521PubMedCrossRefGoogle Scholar
  104. Saladino R, Crestini C, Ciciriello F, Costanzo G, Di Mauro E (2007) Formamide chemistry and the origin of informational polymers. Chem Biodivers 4:694–720PubMedCrossRefGoogle Scholar
  105. Sanchez RA, Orgel LE (1970) Studies in prebiotic synthesis: V. Synthesis and photoanomerization of pyrimidine nucleosides J Mol Biol 47:531–543PubMedGoogle Scholar
  106. Sanchez RA, Ferris JP, Orgel LE (1966) Cyanoacetylene on prebiotic synthesis. Science 154:784–785PubMedCrossRefGoogle Scholar
  107. Sawai H (1976) Catalysis of internucleotide bond formation by divalent metal ions. J Am Chem Soc 98:7037–7039PubMedCrossRefGoogle Scholar
  108. Sawai H, Shibata T, Ohno M (1981) Preparation of oligoadenylates with 2′-5′ linkage using Pb2+ ion catalyst. Tetrahedron 37:481–485CrossRefGoogle Scholar
  109. Schopf JW (1993) Microfossils of the early Archean apex Chert: new evidence of the antiquity of life. Science 260:640–646PubMedCrossRefGoogle Scholar
  110. Schwartz AW (2006) Phosphorus in prebiotic chemistry. Phil Trans R Soc B 361:1743–1749PubMedPubMedCentralCrossRefGoogle Scholar
  111. Schwartz AW, De Graaf RM (1993) The prebiotic synthesis of carbohydrates: a reassessment. J Mol Evol 36:101–106CrossRefGoogle Scholar
  112. Schwartz AW, Goverde M (1982) Acceleration of HCN oligomerization by formaldehyde and related compounds: implications for prebiotic syntheses. J Mol Evol 18:351–353PubMedCrossRefGoogle Scholar
  113. Schwartz AW, Joosten H, Voet AB (1982) Prebiotic adenine synthesisvia HCN oligomerization in ice. Biosystems 15:191–193PubMedCrossRefGoogle Scholar
  114. Shapiro R (1988) Prebiotic ribose synthesis: a critical analysis. Orig Life Evol Biosph 18:71–85PubMedCrossRefGoogle Scholar
  115. Shigemasa Y, Shimao M, Sakazawa C, Matsuura T (1977) Formose reactions. IV. The formose reaction in homogenous systems and the catalytic functions of calcium ion species. Bull Chem Soc Jpn 50:2138–2142CrossRefGoogle Scholar
  116. Sojo V, Herschy B, Whicher A, Camprub E, Lane N (2016) The origin of life in alkaline hydrothermal vents. Astrobiology 16:181–197PubMedCrossRefGoogle Scholar
  117. Sutherland JD (2016) The origin of life—out of the blue. Angew Chem Int Ed 55:104–121CrossRefGoogle Scholar
  118. Tian F, Kasting JF, Zahnle K (2011) Revisiting HCN formation in Earth's early atmosphere. Earth Planet Sci Lett 308:417–423CrossRefGoogle Scholar
  119. Tuck AC, Tollervey D (2011) RNA in pieces. Trends Genet 27:422–432PubMedCrossRefGoogle Scholar
  120. Valle M, Gillet R, Kaur S, Henne A, Ramakrishnan V, Frank J (2003) Visualizing tmRNA entry into a stalled ribosome. Science 300:127–130PubMedCrossRefGoogle Scholar
  121. Walker JC (1985) Carbon dioxide on the early earth. Orig Life Evol Biosph 16:117–127PubMedCrossRefGoogle Scholar
  122. Weber AL (1992) Prebiotic sugar synthesis: hexose and hydroxy acid synthesis from glyceraldehyde catalyzed by iron(III) hydroxide oxide. J Mol Evol 35(1):1–6PubMedCrossRefGoogle Scholar
  123. Wells LE, Armstrong JC, Gonzalez G (2003) Reseeding of early earth by impacts of returning ejecta during the late heavy bombardment. Icurus 162:38–46CrossRefGoogle Scholar
  124. Wetherill GW (1975) Late heavy bombardment of the moon and terrestrial planets, lunar Science conference, 6th, Houston, Tex., march 17-21, 1975, proceedings. Volume 2:1539–1561Google Scholar
  125. White HB III (1976) Coenzymes as fossils of an earlier metabolic state. J Mol Evol 7:101–104PubMedCrossRefGoogle Scholar
  126. Yamagata Y, Kojima H, Ejiri K, Inomata K (1982) AMP synthesis in aqueous solution of adenosine and phosphorous pentoxide. Origins Life 12:333–333CrossRefGoogle Scholar
  127. Yamagata Y, Watanabe H, Namba T (1992) Volcanic production of polyphosphates and its relevance to prebiotic evolution. Nature 352:516–519CrossRefGoogle Scholar
  128. Yamagata Y, Inoue H, Inomata K (1995) Specific effect of magnesium iopn on 2′,3′-cyclic AMP synthesis from adenosine and trimeta phosphate in aqueous solution. Orig Life Evol Biosph 25:47–42PubMedCrossRefGoogle Scholar
  129. Zaccai G, Natali F, Peters J, Rihova M, Zimmerman E, Ollivier J, Combet J, Maurel M-C, Bashan A, Yonath A (2016) The fluctuating ribosome: thermal molecular dynamics characterized by neutron scattering. Scientific Reports 6:37138. doi: 10.1038/srep37138 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Human Environmental StudiesHiroshima Shudo UniversityHiroshimaJapan
  2. 2.Institut de Systématique, Evolution, Biodiversité (ISYEB), UMR 7205 CNRS MNHN UPMC EPHESorbonne UniversitésParisFrance

Personalised recommendations