Origins of Life and Evolution of Biospheres

, Volume 47, Issue 2, pp 203–214 | Cite as

Assessment of the Forward Contamination Risk of Mars by Clean Room Isolates from Space-Craft Assembly Facilities through Aeolian Transport - a Model Study

  • Luc van Heereveld
  • Jonathan Merrison
  • Per Nørnberg
  • Kai Finster


The increasing number of missions to Mars also increases the risk of forward contamination. Consequently there is a need for effective protocols to ensure efficient protection of the Martian environment against terrestrial microbiota. Despite the fact of constructing sophisticated clean rooms for spacecraft assembly a 100 % avoidance of contamination appears to be impossible. Recent surveys of these facilities have identified a significant number of microbes belonging to a variety of taxonomic groups that survive the harsh conditions of clean rooms. These microbes may have a strong contamination potential, which needs to be investigate to apply efficient decontamination treatments. In this study we propose a series of tests to evaluate the potential of clean room contaminants to survive the different steps involved in forward contamination. We used Staphylococcus xylosus as model organism to illustrate the different types of stress that potential contaminants will be subjected to on their way from the spacecraft onto the surface of Mars. Staphylococcus xylosus is associated with human skin and commonly found in clean rooms and could therefore contaminate the spacecraft as a result of human activity during the assembling process. The path the cell will take from the surface of the spacecraft onto the surface of Mars was split into steps representing different stresses that include desiccation, freezing, aeolian transport in a Martian-like atmosphere at Martian atmospheric pressure, and UV radiation climate. We assessed the surviving fraction of the cellular population after each step by determining the integrated metabolic activity of the survivor population by measuring their oxygen consumption rate. The largest fraction of the starting culture (around 70 %) was killed during desiccation, while freezing, Martian vacuum and short-term UV radiation only had a minor additional effect on the survivability of Staphylococcus xylosus. The study also included a simulation of atmospheric transport on Martian dust, which did not significantly alter the metabolic potential of the cells. The high survival potential of skin microbes, which are not among the most robust isolates, clearly underlines the necessity for efficient decontamination protocols and of adequate planetary protection measures. Thus we propose a series of tests to be included into the description of isolates from spacecraft assembly clean rooms in order to assess the forward contamination potential of the specific isolate and to categorize the risk level according to the organisms survival potential. We are aware that the tests that we propose do not exhaust the types of challenges that the microbes would meet on their way and therefore the series of tests is open to being extended.


Space exploration Microorganism Planetary protection Mars 



This research was financially supported by the Danish Council for Independent Research, Natural Sciences (ref. 09-066733). We thank Preben G. Sørensen for the construction of the microelectrodes.

Supplementary material

11084_2016_9515_MOESM1_ESM.pdf (136 kb)
ESM 1 (PDF 135 kb)
11084_2016_9515_MOESM2_ESM.pdf (37 kb)
ESM 2 (PDF 37 kb)
11084_2016_9515_MOESM3_ESM.pdf (116 kb)
ESM 3 (PDF 116 kb)


  1. Bandfield JL, Hamilton VE, Christensen PR (2000) A global view of Martian surface compositions from MGS-TES. Science 287:1626–1630 doi: 10.1126/science.287.5458.1626
  2. Chapman D (1994) The role of water in biomembrane structures. J Food Eng 22:367–380. doi: 10.1016/0260-8774(94)90040-X CrossRefGoogle Scholar
  3. Cockell CS, Schuerger AC, Billi D, Friedmann EI, Panitz C (2005) Effects of assimilated Martian UV flux on the cyanobacterium, Chroococcidiopsissp. 029. Astrobiology 5:127–140. doi: 10.1089/ast.2005.5.127 CrossRefPubMedGoogle Scholar
  4. Davila AF, Skidmore M, Fairén AG, Cockell C, Schulze-Makuch D (2010) New priorities in the robotic exploration of Mars: the case for in situ search for extant life. Astrobiology 10:705–710. doi: 10.1089/ast.2010.0538 CrossRefPubMedGoogle Scholar
  5. DeVincenzi DL, Race MS, Klein HP (1998) Planetary protection, sample return missions and Mars exploration: History, status, and future needs. J Geophys Res 103:28577–28585. doi: 10.1029/98JE01600 CrossRefGoogle Scholar
  6. Dose K, Bieger-Dose A, Dillmann R, Gill M, Kerz O, Klein A, Meinert H, Nawroth T, Risi S, Stridde C (1995) ERA-experiment “Space Biochemistry”. Adv Space Res 16:119–129. doi: 10.1016/0273-1177(95)00280-R CrossRefPubMedGoogle Scholar
  7. Edgett KS, Malin MC (2000) Martian Dust Raising and Surface Albedo Controls: Thin, Dark (and Sometimes Bright) Streaks and Dust Devils in MGSMOC High Resolution Images. Lunar and Planetary Institute Science Conference Abstracts, 31:1073.
  8. Fábian A, Krauss C, Sickafoose A, Horányi M, Robertson S (2001) Measurement of electrical discharges in martian regolith simulant. IEEE Trans Plasma Sci 29:288–291. doi: 10.1109/27.923710 CrossRefGoogle Scholar
  9. Farrell WM, Kaiser ML, Desch MD, Houser JG, Cummer S, Wilt DM, Landis GA (1999) Detecting electrical activity from Martian dust storms. J Geophys Res 104:3795–3801. doi: 10.1029/98JE02821 CrossRefGoogle Scholar
  10. Farrell WM, Smith PH, Delory GT, Hillard GB, Marshal JR, Catling D, Hecht M, Tratt DM, Renno N, Desch MD, Cummer SA, Houser JG, Johnson B (2004) Electric and magnetic signatures of dust devils from the 2000–2001 MATADOR desert tests. J Geophys Res 109:1–13. doi: 10.1029/2003JE002088 Google Scholar
  11. Gilbert JS, Lane SJ, Sparks RSJ, Koyaguchi T (1991) Charge measurements on particle fall out from a volcanic plume. Nature 349:598–600. doi: 10.1038/349598a0 CrossRefGoogle Scholar
  12. Gross F, Grek SB, Calle CI, Lee RU (2001) JSCMars-1Martian Regolith simulant particle charging experiments in a low pressure environment. J Electrost 53:257–266. doi: 10.1016/S0304-3886(01)00152-8 CrossRefGoogle Scholar
  13. Hagen CA, Hawrylewicz EJ, Anderson BT, Cephus M.L. (1970) Effect of ultraviolet on the survival of bacteria airborne in simulated martian dust clouds. Life Sci Space Res 8: 53–58.Google Scholar
  14. Hansen AA, Jensen LL, Kristoffersen T, Mikkelsen K, Merrison J, Finster KW, Lomstein BA (2009) Effects of long-term simulated martian conditions on a freeze- Dried and homogenized bacterial permafrost community. Astrobiology 9:229–240. doi: 10.1089/ast.2008.0244 CrossRefPubMedGoogle Scholar
  15. Horneck G (2000) The microbial world and the case for Mars. Planet Space Sci 48:1063–1053. doi: 10.1016/S0032-0633(00)00079-9 Google Scholar
  16. Horneck G, Eschweiler U, Reitz G, Wehner J, Willimek R, Strauch K (1995) Biological responses to space: results of the experiment “Exobiological Unit” of ERA on EURECA I. Adv Space Res 16:105–118. doi: 10.1016/0273-1177(95)00279-N CrossRefPubMedGoogle Scholar
  17. Kamra AK (1972) Measurements of the electrical properties of dust storms. J Geophys Res 77:5856–5869. doi: 10.1029/JC077i030p05856 CrossRefGoogle Scholar
  18. Krauss CE, Hornyi M, Robertson S (2003) Experimental evidence for electrostatic discharging of dust near the surface of Mars. New J Phys 5:70–79CrossRefGoogle Scholar
  19. Mainelis G, Willeke K, Baron P, Reponen T, Grinshpun SA, Górny RL, Trakumas S (2001) Electrical charges on airborne microorganisms. J Aerosol Sci 32:1087–1110. doi: 10.1016/S0021-8502(01)00039-8 CrossRefGoogle Scholar
  20. Mainelis G, Górny RL, Reponen T, Trunov M, Grinshpun SA, Baron P, Yadav J, Willeke K (2002) Effect of electrical charges and fields on injury and viability of airborne bacteria. Biotechnol Bioeng 79:229–241. doi: 10.1002/bit.10290 CrossRefPubMedGoogle Scholar
  21. Mancinelli R, Klovstad M (2000) Martian soil and UV radiation: microbial viability assessment on spacecraft surfaces. Planet Space Sci 48:1093–1097. doi: 10.1016/S0032-0633(00)00083-0 CrossRefGoogle Scholar
  22. Mazur P, Leibo SP, Chu EHY (1972) A two-factor hypothesis of freezing injury*1: Evidence from Chinese hamster tissue-culture cells. Exp Cell Res 71:355–345. doi: 10.1016/0014-4827(72)90303-5 CrossRefGoogle Scholar
  23. McKay CP, Schulze-Makuch D, Boston PJ, Ten Kate IL, Davila AF, Shock E (2011) The next phase in our search for life: an expert discussion. Astrobiology 11:2–8. doi: 10.1089/ast.2010.1122 CrossRefPubMedGoogle Scholar
  24. Merrison JP, Bertelsen P, Frandsen C, Gunnlaugsson HP, Knudsen JM, Lunt S, Madsen MB, Mossin LA, Nielsen J, Nørnberg P, Rasmussen KR, Uggerhøj E (2002) Simulation of the Martian dust aerosol at low wind speeds. J Geophys Res 107:5133–5141. doi: 10.1029/2001JE001807 CrossRefGoogle Scholar
  25. Merrison J, Jensen J, Kinch K, Mugford R, Nørnberg P (2004) The electrical properties of Mars analogue dust. Planet Space Sci 52:279–290. doi: 10.1016/j.pss.2003.11.003 CrossRefGoogle Scholar
  26. Moissl-Eichinger C, Rettberg P, Pukall R (2012) The first collection of spacecraft-associated microorganisms: a public source for extremotolerant microorganisms from spacecraft assembly clean rooms. Astrobiology 12:1024–1034. doi: 10.1089/ast.2012.0906 CrossRefPubMedGoogle Scholar
  27. Newcombe DA, Schuerger AC, Benardini JN, Dickinson D, Tanner R, Venkateswaran K (2005) Survival of spacecraft-associated microorganisms under simulated martian UV irradiation. Appl Environ Microbiol 71:8147–8156. doi: 10.1128/AEM.71.12.8147-8156.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Pollack JB, Colburn DS, Flasar FM, Kahn R, Carlston CE, Pidek D (1979) Properties and effects of dust particles suspended in the martian atmosphere. J Geophys Res 84:2929–2945. doi: 10.1029/JB084iB06p02929 CrossRefGoogle Scholar
  29. Revsbech NP (1989) An oxygen microsensor with a guard cathode. Limnol Oceanogr 34:474–478. doi: 10.4319/lo.1989.34.2.0474 CrossRefGoogle Scholar
  30. Santivarangkna C, Wenning M, Foerst P, Kulozik U (2007) Damage of cell envelope of Lactobacillus helveticus during vacuum drying. J Appl Microbiol 102:748–756. doi: 10.1111/j.1365-2672.2006.03123.x CrossRefPubMedGoogle Scholar
  31. Santivarangkna C, Kulozik U, Foerst P (2008) Inactivation mechanisms of lactic acid starter cultures preserved by drying processes. J Appl Microbiol 105:1–13. doi: 10.1111/j.1365-2672.2008.03744.x CrossRefPubMedGoogle Scholar
  32. Schuerger AC, Mancinelli RL, Kern RG, Rothschild LJ, McKay CP (2003) Survival of endospores of Bacillus subtilis on spacecraft surfaces under simulated martian environments: implications for the forward contamination of Mars. Icarus 165:253–276CrossRefPubMedGoogle Scholar
  33. Schuerger A, Richards J, Newcombe D, Venkateswaran K (2006) Rapid inactivation of seven Bacillus spp. under simulated Mars UV irradiation. Icarus 181:52–62. doi: 10.1016/j.icarus.2005.10.008 CrossRefGoogle Scholar
  34. Tomasko MG, Doose LR, Lemmon M, Smith PH, Wegryn E (1999) Properties of dust in the Martian atmosphere from the Imager on Mars Pathfinder. J Geophys Res 104:8987–9007. doi: 10.1029/1998JE900016
  35. Vasavada A, Paige DA, Wood SE (1999) Near-surface temperatures on mercury and the moon and the stability of polar ice deposits. Icarus 141:193–179. doi: 10.1006/icar.1999.6175 CrossRefGoogle Scholar
  36. Wolfe J (1987) Lateral stresses in membranes at low water potential. Aust J Plant Physiol 14:311–314. doi: 10.1071/PP9870311 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Luc van Heereveld
    • 1
  • Jonathan Merrison
    • 2
  • Per Nørnberg
    • 1
  • Kai Finster
    • 1
    • 3
  1. 1.Department of BioscienceAarhus UniversityAarhus CDenmark
  2. 2.Department of Physics and AstronomyAarhus UniversityAarhus CDenmark
  3. 3.Stellar Astrophysics Center, Department of Physics and AstronomyAarhus UniversityAarhus CDenmark

Personalised recommendations