Thermodynamics, Disequilibrium, Evolution: Far-From-Equilibrium Geological and Chemical Considerations for Origin-Of-Life Research

  • L. M. BargeEmail author
  • E. Branscomb
  • J. R. Brucato
  • S. S. S. Cardoso
  • J. H. E. Cartwright
  • S. O. Danielache
  • D. Galante
  • T. P. Kee
  • Y. Miguel
  • S. Mojzsis
  • K. J. Robinson
  • M. J. Russell
  • E. Simoncini
  • P. Sobron
Prebiotic Chemistry


The 8th meeting of the NASA Astrobiology Institute’s Thermodynamics, Disequilibrium, Evolution (TDE) Focus Group took place in November 2014 at the Earth-Life Science Institute, at the Tokyo Institute of Technology, Japan. The principal aim of this workshop was to discuss the conditions for early Earth conducive for the emergence of life, with particular regard to far-from-equilibrium geochemical systems and the thermodynamic and chemical phenomena that are driven into being by these disequilibria. The TDE focus group seeks to understand how disequilibria are generated in geological, chemical and biological systems, and how these disequilibria can lead to emergent phenomena, such as self-organization in bounded conditions eventuating in metabolism. Some planetary water-rock interfaces generate electrochemical disequilibria (e.g. electron, proton and/or ion gradients), and life itself is an out-of-equilibrium system that operates by harnessing such gradients across...


Far-from-equilibrium thermodynamics Life origins Geochemical disequilibrium Hydrothermal vents Early earth Habitability Chemiosmosis Self-organization Laboratory simulation 



The authors wish to thank the Earth-Life Science Institute of the Tokyo Institute of Technology for supporting and hosting the TDE Focus Group meeting on which this publication is based. The Thermodynamics, Disequilibrium, Evolution (TDE) Focus Group is supported by the NASA Astrobiology Institute (NAI). Parts of this work were carried out at the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration; LMB and MJR are supported by NAI (Icy Worlds). ES thanks the ORIGINS COST Action (TD1308) for the STSM Reference Number: COST-STSM-TD1308-26973. ES is supported by Agreement ASI/INAF 2015 - 002 - R.O. JHEC acknowledges the financial support of the Spanish MINCINN project FIS2013-48444-C2-2-P. © 2016, all rights reserved.


  1. Abramov O, Mojzsis SJ (2009) Microbial habitability of the hadean earth during the late heavy bombardment. Nature 459:419–422PubMedCrossRefGoogle Scholar
  2. Abramov O, Kring DA, Mojzsis SJ (2013) The impact environment of the hadean earth. Chemie der Erde-Geochemistry 73(3):227–248CrossRefGoogle Scholar
  3. Arrhenius GO (2003) Crystals and life. Helv Chim Acta 86:1569–1586CrossRefGoogle Scholar
  4. Astumian RD (2007) Adiabatic operation of a molecular machine. Proc Natl Acad Sci 104(50):19715–19718PubMedCentralCrossRefGoogle Scholar
  5. Baaske P, Weinert FM, Duhr S, Lemke KH, Russell MJ, Braun D (2007) Extreme accumulation of nucleotides in simulated hydrothermal pore systems. Proc Natl Acad Sci U S A 104:9346–9351PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bally AW, Snelson S (1980) Realms of subsidence. inMiall, a. D., ed. Facts and principles of world petroleum occurrence: Canadian Society of Petroleum Geologists Memoir 6:9–94Google Scholar
  7. Baltscheffsky, H. (1971) Inorganic pyrophosphate and the origin and evolution of biological energy transformation (biological energy transformation origin and evolution, discussing inorganic pyrophosphates precursor to adenosine phosphates as energy carriers). In Chemical Evolution and the Origin of Life, edited by R. Buvet and C. Ponnamperuma, North-Holland Pub. Cy., Amsterdam, pp 466–474Google Scholar
  8. Baltscheffsky H, Persson B (2014) On an early gene for membrane-integral inorganic pyrophosphatase in the genome of an apparently pre-LUCA extremophile, the archaeon Candidatus Korarchaeum cryptofilum. J Mol Evol 78:140–147PubMedCrossRefGoogle Scholar
  9. Barge LM, Doloboff IJ, White LM, Russell MJ, Kanik I (2012) Characterization of iron-phosphate-silicate chemical garden structures. Langmuir 28:3714–3721PubMedCrossRefGoogle Scholar
  10. Barge LM, Kee TP, Doloboff IJ, Hampton JM, Ismail M, Pourkashanian M, Zeytounian J, Baum MM, Moss JA, Lin CK, Kidd RD (2014) The fuel cell model of abiogenesis: a new approach to origin-of-life simulations. Astrobiology 14(3):254–270PubMedCrossRefGoogle Scholar
  11. Barge LM, Cardoso SSS, Cartwright JHE, Cooper GJT, Cronin L, De Wit A, Doloboff IJ, Escribano B, Goldstein RE, Haudin F, Jones DEH, Mackay AL, Maselko J, Pagano JJ, Pantaleone J, Russell MJ, Sainz-Díaz CI, Steinbock O, Stone DA, Tanimoto Y, Thomas NL (2015) From chemical gardens to Chemobrionics. Chem Rev 115:8652–8703PubMedCrossRefGoogle Scholar
  12. Barros SCC, Almenara JM, Deleuil M, Díaz RF, Csizmadia S, Cabrera J, Chaintreuil S, Cameron AC, Hatzes A, Haywood R, Lanza AF (2014) Revisiting the transits of CoRoT-7b at a lower activity level. Astron Astrophys 569:A74CrossRefGoogle Scholar
  13. Batista BC, Cruz P, Steinbock O (2014) From hydrodynamic plumes to chemical gardens: the concentrationdependent onset of tube formation. Langmuir 30:9123–9129PubMedCrossRefGoogle Scholar
  14. Bell EA, Boehnke P, Harrison TM, Mao WL (2015) Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proc Natl Acad Sci 112(47):14518–14521PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bernal JD (1960) The problem of stages in biopoesis. In: Aspects of the origin of life, edited by M. Pergamon Press, New York, Florkin, pp. 30–45CrossRefGoogle Scholar
  16. Berrisford DJ, Bolm C, Sharpless KB (1995) Ligand-accelerated catalysis. Angewandte Chemie International Edition in English 34(10):1059–1070CrossRefGoogle Scholar
  17. Berta-Thompson ZK, Irwin J, Charbonneau D, Newton ER, Dittmann JA, Astudillo-Defru N, Bonfils X, Gillon M, Jehin E, Stark AA, Stalder B (2015) A rocky planet transiting a nearby low-mass star. Nature 527(7577):204–207PubMedCrossRefGoogle Scholar
  18. Boltzmann L (1886) Reprinted and translated in: theoretical physics and philosophical problems; selected writings (Vienna circle collection); chap. The second law of thermodynamics. Kluwer D. Reidel publishing Co., Dordrecht, Holland, p. 13–32, 1974Google Scholar
  19. Bounama C, Franck S, von Bloh W (2001) The fate of the Earth’s ocean. Hydrol Earth Syst Sci 5:569–575CrossRefGoogle Scholar
  20. Branscomb E, Russell MJ (2013) Turnstiles and bifurcators: the disequilibrium converting engines that put metabolism on the road. Biochim Biophys Acta Bioenergetics 1827:62–78CrossRefGoogle Scholar
  21. Burcar BT, Barge LM, Trail D, Watson EB, Russell MJ, McGown LB (2015) RNA Oligomerization in Laboratory Analogues of Alkaline Hydrothermal Vent Systems. Astrobiology 15(7):509–522. doi: 10.1089/ast.2014.1280 PubMedCrossRefGoogle Scholar
  22. Cardoso SSS, McHugh ST (2010) Turbulent plumes with heterogeneous chemical reaction on the surface of small buoyant droplets. J Fluid Mech 642:49–77CrossRefGoogle Scholar
  23. Charbonneau D, Berta ZK, Irwin J, Burke CJ, Nutzman P, Buchhave LA, Lovis C, Bonfils X, Latham DW, Udry S, Murray-Clay RA (2009) A super-earth transiting a nearby low-mass star. Nature 462(7275):891–894PubMedCrossRefGoogle Scholar
  24. Chatterjee MN, Kay ER, Leigh DA (2006) Beyond switches: ratcheting a particle energetically uphill with a compartmentalized molecular machine. J Am Chem Soc 128(12):4058–4073Google Scholar
  25. Chatzitheodoridis E, Haigh S, Lyon I (2014) A conspicuous clay ovoid in Nakhla: evidence for subsurface hydrothermal alteration on Mars with implications for astrobiology. Astrobiology 14(8):651–693PubMedPubMedCentralCrossRefGoogle Scholar
  26. Choban ER, Markoski LJ, Wieckowski A, Kenis PAJ (2004) Microfluidic fuel cell based on laminar flow. J Power Sources 128(1):54–60CrossRefGoogle Scholar
  27. Cockell CS (2014) Trajectories of Martian habitability. Astrobiology 14(2):182–203PubMedPubMedCentralCrossRefGoogle Scholar
  28. Cowan, N. B., Abbot, D. S. (2014) Water Cycling Between Ocean and Mantle: Super-Earths Need Not be Waterworlds. arXiv preprint arXiv:1401.0720.Google Scholar
  29. Dasgupta R, Hirschmann MM (2006) Melting in the Earth’s deep upper mantle caused by carbon dioxide. Nature 440(7084):659–662PubMedCrossRefGoogle Scholar
  30. Dauphas N, Cates NL, Mojzsis SJ, Busigny V (2007) Identification of chemical sedimentary protoliths using iron isotopes in the >3750 Ma Nuvvuagittuq supracrustal belt, Canada. Earth Planet Sci Lett 254(3):358–376CrossRefGoogle Scholar
  31. Degens ET, Ross DA (2013) Hot brines and recent heavy metal deposits in the Red Sea: a geochemical and geophysical account. Springer-VerlagGoogle Scholar
  32. Denis C, Rybicki KR, Schreider AA, Tomecka-Suchoñ S, Varga P (2011) Length of the day and evolution of the Earth’s core in the geological past. Astronomische Nachrichten 332:24–35CrossRefGoogle Scholar
  33. Dones L, Tremaine S (1993) Why Does the Earth Spin Forward? Science 259(5093):350–354PubMedCrossRefGoogle Scholar
  34. Dorn ED, Nealson KH, Adami C (2011) Monomer abundance distribution patterns as a universal biosignature: examples from terrestrial and digital life. J Mol Evol 72(3):283–295PubMedCrossRefGoogle Scholar
  35. Draganić IG, Bjergbakke E, Draganić ZD, Sehested K (1991) Decomposition of ocean waters by potassium-40 radiation 3800 Ma ago as a source of oxygen and oxidizing species. Precambrian Res 52(3–4):337–345CrossRefGoogle Scholar
  36. Dragomir D, Matthews JM, Eastman JD, Cameron C, Howard AW, Guenther DB, Kuschnig R, Moffat AF, Rowe JF, Rucinski SM, Sasselov D (2013) MOST detects transits of HD 97658b, a warm, likely volatile-rich super-Earth. Astrophys J Lett 772(1):L2CrossRefGoogle Scholar
  37. Dressing CD, Charbonneau D, Dumusque X, Gettel S, Pepe F, Cameron AC, Latham DW, Molinari E, Affer L, Bonomo AS, Buchhave LA (2015) The mass of Kepler-93b and the composition of terrestrial planets. Astrophys J 800(2):135CrossRefGoogle Scholar
  38. Ducluzeau A-L, van Lis R, Duval S, Schoepp-Cothenet B, Russell MJ, Nitschke W (2009) Was nitric oxide the first strongly oxidizing terminal electron sink. Trends Biochem Sci 34:9–15PubMedCrossRefGoogle Scholar
  39. Ducluzeau AL, Schoepp-Cothenet B, Baymann F, Russell MJ, Nitschke W (2014) Free energy conversion in the LUCA: quo vadis? Biochim Biophys Acta Bioenergetics 1837(7):982–988CrossRefGoogle Scholar
  40. Dumusque X, Bonomo AS, Haywood RD, Malavolta L, Ségransan D, Buchhave LA, Cameron AC, Latham DW, Molinari E, Pepe F, Udry S (2014) The Kepler-10 planetary system revisited by HARPS-N: A hot rocky world and a solid Neptune-mass planet. Astrophys J 789(2):154CrossRefGoogle Scholar
  41. Eck RV, Dayhoff MO (1968) Evolution of the structure of ferredoxin based on living relics of primitive amino acid sequences. Science 152:363–366CrossRefGoogle Scholar
  42. Elkins-Tanton LT (2008) Linked magma ocean solidification and atmospheric growth for earth and Mars. Earth Planet Sci Lett 271:181–191CrossRefGoogle Scholar
  43. Elsila JE, Glavin DP, Dworkin JP (2009) Cometary glycine detected in samples returned by stardust. Meteorit Planet Sci 44(9):1323–1330CrossRefGoogle Scholar
  44. Fogg MJ (1992) An estimate of the prevalence of biocompatible and habitable planets. J Br Interplanet Soc 45(1):3–12PubMedGoogle Scholar
  45. Fressin F, Torres G, Charbonneau D, Bryson ST, Christiansen J, Dressing CD, Jenkins JM, Walkowicz LM, Batalha NM (2013) The false positive rate of Kepler and the occurrence of planets. Astrophys J 766(2):81CrossRefGoogle Scholar
  46. Frost DJ, Mann U, Asahara Y, Rubie DC (2008) The redox state of the mantle during and just after core formation. Philos Trans R Soc A366:4315–4337CrossRefGoogle Scholar
  47. Fuchs, G. (1989) Alternative pathways of autotrophic CO2 fixation. In Autotrophic Bacteria, edited by H.G. Schlegel and B. Bowen, Science Technology, Madison, pp 365–382.Google Scholar
  48. Genda H (2016) Origin of Earth’s oceans: an assessment of the total amount, history and supply of water. Geochem J 50(1):27–42CrossRefGoogle Scholar
  49. Gillon M, Demory BO, Benneke B, Valencia D, Deming D, Seager S, Lovis C, Mayor M, Pepe F, Queloz D, Ségransan D (2012) Improved precision on the radius of the nearby super-Earth 55 Cnc e. Astron Astrophys 539:A28CrossRefGoogle Scholar
  50. Goldschmidt VM (1937) The principles of distribution of chemical elements in minerals and rocks. J Chem Soc 1937:655–673CrossRefGoogle Scholar
  51. Goldschmidt VM (1952) Geochemical aspects of the origin of complex organic molecules on the earth, as precursors to life. New Biology 12:97–105Google Scholar
  52. Guitreau M, Blichert-Toft J, Mojzsis SJ, Roth AS, Bourdon B, Cates NL, Bleeker W (2014) Lu–Hf isotope systematics of the hadean–Eoarchean Acasta gneiss complex (northwest territories, Canada). Geochim Cosmochim Acta 135:251–269CrossRefGoogle Scholar
  53. Hand K, Carlson RW, Chyba CF (2007) Energy, chemical disequilibrium, and geological constraints on Europa. Astrobiology 7(6):1006–1022PubMedCrossRefGoogle Scholar
  54. Hansen HCB, Gulberg S, Erbs M, Koch CB (2001) Kinetics of nitrate reduction by green rusts: effects of interlayer anion and Fe(II): Fe(III) ratio. Appl Clay Sci 18:81–91CrossRefGoogle Scholar
  55. Harrison TM (2009) The hadean crust: evidence from >4 Ga zircons. Annu Rev Earth Planet Sci 37:479–505CrossRefGoogle Scholar
  56. Harrison TM, Schmitt AK, McCulloch MT, Lovera OM (2008) Early (≥ 4.5 Ga) formation of terrestrial crust: Lu–Hf, d18O, and Ti thermometry results for hadean zircons. Earth Planet Sci Lett 268(3):476–486CrossRefGoogle Scholar
  57. Haywood RD, Cameron AC, Queloz D, Barros SCC, Deleuil M, Fares R, Gillon M, Lanza AF, Lovis C, Moutou C, Pepe F (2014) Planets and stellar activity: hide and seek in the CoRoT-7 system. Mon Not R Astron Soc 443(3):2517–2531CrossRefGoogle Scholar
  58. He Y, Li M, Perumal V, Feng X, Fang J, Xie J, Sievert SM, Wang F (2016) Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments. Nature Microbiology 16035. doi: 10.1038/NMICROBIOL.2016.35
  59. Herschy B, Whicher A, Camprubi E, Watson C, Dartnell L, Ward J, Evans JRG, Lane N (2014) An origin-of-life reactor to simulate alkaline hydrothermal vents. J Mol Evol 79:213–227. doi: 10.1007/s00239-014-9658-4 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Hess HH (1962) History of ocean basins. In Petrologic studies, a. E. J. Engel et al., eds. Geological Society of America. N Y 4:599–620Google Scholar
  61. Hess HH (1965) Mid-oceanic ridges and tectonics of the sea-floor. Submarine geology and geophysics, Colston Papers 17:317–334Google Scholar
  62. Hirschmann MM, Tenner T, Aubaud C, Withers AC (2009) Dehydrationmelting of nominally anhydrous mantle: the primacy of partitioning. Phys Earth Planet Int 176:54–68CrossRefGoogle Scholar
  63. Hoffman P, Schrag D (2002) The snowball earth hypothesis: testing the limits of global change. Terra Nov. 14:129–155Google Scholar
  64. Hoffmann PM (2012) Lifes ratchet: how molecular machines extract order from chaos. Basic BooksGoogle Scholar
  65. Höning D, Hansen-Goos H, Airo A, Spohn T (2014) Biotic vs. abiotic earth: a model for mantle hydration and continental coverage. Planetary and Space Science 98:5–13CrossRefGoogle Scholar
  66. Howard AW, Marcy GW, Bryson ST, Jenkins JM, Rowe JF, Batalha NM, Borucki WJ, Koch DG, Dunham EW, Gautier TN III, Van Cleve J (2012) Planet occurrence within 0.25 AU of solar-type stars from Kepler. Astrophys J Suppl Ser 201(2):15CrossRefGoogle Scholar
  67. Howard AW, Sanchis-Ojeda R, Marcy GW, Johnson JA, Winn JN, Isaacson H, Fischer DA, Fulton BJ, Sinukoff E, Fortney JJ (2013) A rocky composition for an earth-sized exoplanet. Nature 503(7476):381–384PubMedCrossRefGoogle Scholar
  68. Hsu H-W, Postberg F, Sekine Y, Shibuya T, Kempf S, Horányi M, Juhász A, Altobelli N, Suzuki K, Masaki Y, Kuwatani T, Tachibana S, Sirono S, Moragas-Klostermeyer G, Srama R (2015) Ongoing hydrothermal activities within Enceladus. Nature 519:207–210. doi: 10.1038/nature14262 PubMedCrossRefGoogle Scholar
  69. Huang SS (1959) Occurrence of life in the universe. Am Sci 47:397–402Google Scholar
  70. Huber C, Wächtershäuser G (2003) Primordial reductive amination revisited. Tetrahedron Lett 44(8):1695–1697CrossRefGoogle Scholar
  71. Jacobsen EN, Marko I, Mungall WS, Schroeder G, Sharpless KB (1988) Asymmetric dihydroxylation via ligand-accelerated catalysis. J Am Chem Soc 110(6):1968–1970CrossRefGoogle Scholar
  72. Kaltenegger L, Sasselov D (2011) Exploring the habitable zone for Kepler planetary candidates. Astrophys J 736:L25CrossRefGoogle Scholar
  73. Kaster A-K, Moll J, Parey K, Thauer RK (2011) Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea. Proc Natl Acad Sci U S A 108:2981–2986PubMedPubMedCentralCrossRefGoogle Scholar
  74. Kasting JF (1990) Bolide impacts and the oxidation state of carbon in the Earth’s early atmosphere, Orig. Life 20:199–231Google Scholar
  75. Kasting JF (1993) Earth’s earliest atmosphere. Science 259:920–926PubMedCrossRefGoogle Scholar
  76. Kjeang E, Djilali N, Sinton D (2009) Microfluidic fuel cells: a review. J Power Sources 186:353–369CrossRefGoogle Scholar
  77. Kramers HA (1940) Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7(4):284–304CrossRefGoogle Scholar
  78. Kreysing M, Keil L, Lanzmich S, Braun D (2015) Heat flux across an open pore enables the continuous replication and selection of oligonucleotides towards increasing length. Nat Chem 7(3):203–208PubMedCrossRefGoogle Scholar
  79. Krissansen-Totton J, Bergsman DS, Catling DC (2016) On detecting biospheres from thermodynamic disequilibrium in planetary atmospheres. Astrobiology 16(1):39–67 ArXiv:1503.08249v1 [astro-ph.EP]PubMedCrossRefGoogle Scholar
  80. Kurland CG (2010) The RNA dreamtime. BioEssays 32(10):866–871PubMedCrossRefGoogle Scholar
  81. Lane N (2010) Why are cells powered by proton gradients? Nature Ed 3:18Google Scholar
  82. Lane N, Allen JF, Martin W (2010) How did LUCA make a living? Chemiosmosis in the origin of life. BioEssays 32(4):271–280PubMedCrossRefGoogle Scholar
  83. Lenton T, Watson A (2004) Biotic enhancement of weathering, atmospheric oxygen and carbon dioxide in the Neoproterozoic. Geophys Res Lett 31:5CrossRefGoogle Scholar
  84. Line MR, Yung Y (2013) A systematic retrieval analysis of secondary eclipse spectra. III. Diagnosting chemical disequilibrium in planetary atmospheres. Astrophys J 779(1):3CrossRefGoogle Scholar
  85. Lovelock JE (1965) A physical basis for life detection experiments. Nature 207:568–570PubMedCrossRefGoogle Scholar
  86. Lovelock JE (1975) Thermodynamics and the recognition of alien biospheres. Proc Roy Soc Lond B 189:167–181CrossRefGoogle Scholar
  87. Ludwig KA, Shen CC, Kelley DS, Cheng H, Edwards RL (2011) U–Th systematics and 230 Th ages of carbonate chimneys at the lost City hydrothermal field. Geochim Cosmochim Acta 75(7):1869–1888CrossRefGoogle Scholar
  88. Maas R, Kinny PD, Williams I, Froude DO, Compston W (1992) The Earth’s oldest known crust: a geochronological and geochemical study of 3900–4200 Ma old detrital zircons from Mt. Narryer and Jack Hills, Western Australia. Geochim. Cosmochim. Acta 56:1281–1300Google Scholar
  89. Maher KA, Stevenson DJ (1988) Impact frustration of the origin of life. Nature 331:612–614PubMedCrossRefGoogle Scholar
  90. Manning CE, Mojzsis SJ, Harrison TM (2006) Geology, age and origin of supracrustal rocks at rosingAkilia, West Greenland. Am J Sci 306:303–366CrossRefGoogle Scholar
  91. Martin RS, Mather TA, Pyle DM (2007) Volcanic emissions and the early earth atmosphere. Geochim Cosmochim Acta 71:3673–3685CrossRefGoogle Scholar
  92. Martin, W. F., Neukirchen, S. & Sousa, F. L. (2015) Early Life. In Microbial Evolution under Extreme Conditions. Walter de Gruyter GmbH & Co KG pp. 171–184Google Scholar
  93. McGlynn SE, Kanik I, Russell MJ (2012) Modification of simulated hydrothermal iron sulfide chimneys by RNA and peptides. Philos Trans R Soc Lond A: Phys Sci 370:1–16CrossRefGoogle Scholar
  94. Menou K (2015) Climate stability of habitable earth-like planets. Earth Planet Sci Lett 429:20–24CrossRefGoogle Scholar
  95. Mielke RE, Robinson KJ, White LM, McGlynn SE, McEachern K, Bhartia R, Kanik I, Russell MJ (2011) Iron-sulfide-bearing chimneys as potential catalytic energy traps at life’s emergence. Astrobiology 11:933–950PubMedCrossRefGoogle Scholar
  96. Miguel Y, Brunini A (2010) Planet formation: statistics of spin rates and obliquities of extrasolar planets. MNRAS 406(3):1935–1943Google Scholar
  97. Mojzsis SJ, Arrhenius G, McKeegan KD, Harrison TM, Nutman AP, Friend CRL (1996) Evidence for life on earth before 3,800 million years ago. Nature 384(6604):55–59PubMedCrossRefGoogle Scholar
  98. Mojzsis SJ, Harrison TM, Pidgeon RT (2001) Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4300 Myr ago. Nature 409:178–181PubMedCrossRefGoogle Scholar
  99. Mojzsis SJ, Coath CD, Greenwood JP, McKeegan KD, Harrison TM (2003) Mass-independent isotope effects in Archean (2.5 to 3.8 Ga) sedimentary sulfides determined by ion microprobe analysis. Geochim Cosmochim Acta 67(9):1635–1658CrossRefGoogle Scholar
  100. Mulkidjanian AY, Galperin MY, Koonin EV (2009) Co-evolution of primordial membranes and membrane proteins. Trends Biochem Sci 34(4):206–215PubMedPubMedCentralCrossRefGoogle Scholar
  101. Nakamura R, Takashima T, Kato S, Takai K, Yamamoto M, Hashimoto K (2010) Electrical current generation across a black smoker chimney. Angew Chem Int Ed 49(42):7692–7694CrossRefGoogle Scholar
  102. Narayanan SR, Haines B, Soler J, Valdez TI (2011) Electrochemical conversion of carbon dioxide to formate in alkaline polymer electrolyte membrane cells. J Electrochem Soc 158:A167–A173CrossRefGoogle Scholar
  103. Nelson BE, Ford EB, Wright JT, Fischer DA, von Braun K, Howard AW, Payne MJ, Dindar S (2014) The 55 Cancri planetary system: fully self-consistent N-body constraints and a dynamical analysis. Mon Not R Astron Soc 441(1):442–451CrossRefGoogle Scholar
  104. Nitschke W, Russell MJ (2010) Just like the universe the emergence of life had high enthalpy and low entropy beginnings. Journal of Cosmology 10:3200–3216Google Scholar
  105. Nitschke W, Russell MJ (2013) Beating the acetyl coenzyme-a pathway to the origin of life. Phil. Trans. R. Soc. Lond. B. Biol. Sci. 368:20120. doi: 10.1098/rstb.2012.0258 CrossRefGoogle Scholar
  106. Nitschke W, McGlynn SE, Milner-White EJ, Russell MJ (2013) On the antiquity of metalloenzymes and their substrates in bioenergetics. Biochim. Biophys. Acta, Bioenergetics 1827:871–881CrossRefGoogle Scholar
  107. Novikov Y, Copley SD (2013) Reactivity landscape of pyruvate under simulated hydrothermal vent conditions. Proc Natl Acad Sci U S A 110:13283–13288PubMedPubMedCentralCrossRefGoogle Scholar
  108. Nutman AP, Friend CRL, Paxton S (2009) Detrital zircon sedimentary provenance ages for the Eoarchaean Isua supracrustal belt southern West Greenland: juxtaposition of a ca. 3700 Ma juvenile arc assemblage against an older complex with 3920–3800 Ma components. Precambrian Res 172:212–233CrossRefGoogle Scholar
  109. Nutman AP, Friend CR, Bennett VC, Wright D, Norman MD (2010) 3700 Ma pre-metamorphic dolomite formed by microbial mediation in the Isua supracrustal belt (W. Greenland): simple evidence for early life? Precambrian Res 183(4):725–737CrossRefGoogle Scholar
  110. Ohtsuki K, Ida S (1998) Planetary rotation by accretion of planetesimals with nonuniform spatial distribution formed by the planet's gravitational perturbation. Icarus 131(2):393–420CrossRefGoogle Scholar
  111. Papineau D, Mojzsis SJ (2006) Mass-independent fractionation of sulfur isotopes in sulfides from the pre-3770 Ma Isua Supracrustal Belt, West Greenland. Geobiology 4(4):227–238CrossRefGoogle Scholar
  112. Papineau DMSJ, Mojzsis SJ, Karhu JA, Marty B (2005) Nitrogen isotopic composition of ammoniated phyllosilicates: case studies from Precambrian metamorphosed sedimentary rocks. Chem Geol 216(1):37–58CrossRefGoogle Scholar
  113. Pepe F, Cameron AC, Latham DW, Molinari E, Udry S, Bonomo AS, Buchhave LA, Charbonneau D, Cosentino R, Dressing CD, Dumusque X (2013) An earth-sized planet with an earth-like density. Nature 503(7476):377–380PubMedCrossRefGoogle Scholar
  114. Pizzarello S, Cronin JR (2000) Non-racemic amino acids in the Murray and Murchison meteorites. Geochim Cosmochim Acta 64(2):329–338PubMedCrossRefGoogle Scholar
  115. Prigogine I (1977) Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order through Fluctuations, 1 edn. Wiley, New YorkGoogle Scholar
  116. Rickard D, Butler IB, Oldroyd A (2001) A novel iron sulphide mineral switch and its implications for Earth and planetary science. Earth Planet Sci Lett 189:85–91CrossRefGoogle Scholar
  117. Rosing MT (1999) 13C-depleted carbon microparticles in >3700-Ma Sea-floor sedimentary rocks from West Greenland. Science 283:674–676PubMedCrossRefGoogle Scholar
  118. Rosing MT, Bird DK, Sleep NH, Glassley W, Albarede F (2006) The rise of continents—an essay on the geologic consequences of photosynthesis. Palaeogeogr Palaeoclimatol Palaeoecol 232(2):99–113CrossRefGoogle Scholar
  119. Roth AS, Bourdon B, Mojzsis SJ, Touboul M, Sprung P, Guitreau M, Blichert-Toft J (2013) Inherited 142Nd anomalies in Eoarchean protoliths. Earth Planet Sci Lett 361:50–57CrossRefGoogle Scholar
  120. Rubie DC, Frost DJ, Mann U, Asahara Y, Nimmo F, Tsuno K, Kegler P, Holzheid A, Palme H (2011) Heterogeneous accretion, composition and core–mantle differentiation of the earth. Earth Planet Sci Lett 301(1):31–42CrossRefGoogle Scholar
  121. Russell MJ, Hall AJ (1997) The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J Geol Soc Lond 154:377–402CrossRefGoogle Scholar
  122. Russell MJ, Daniel RM, Hall AJ, Sherringham J (1994) A hydrothermally precipitated catalytic iron sulphide membrane as a first step toward life. J Mol Evol 39:231–243CrossRefGoogle Scholar
  123. Russell MJ, Hall AJ, Mellersh AR (2003) On the dissipation of thermal and chemical energies on the early earth: the onsets of hydrothermal convection, chemiosmosis, genetically regulated metabolism and oxygenic photosynthesis. In: "natural and laboratory-simulated thermal geochemical processes" R, Ikan edn. Kluwer Academic Publishers pp, Dordrecht, pp. 325–388CrossRefGoogle Scholar
  124. Russell MJ, Nitschke W, Branscomb E (2013) The inevitable journey to being. Phil Trans R Soc Lond B Biol Sci 368:20120254. doi: 10.1098/rstb.2012.0254 CrossRefGoogle Scholar
  125. Russell MJ, Barge LM, Bhartia R, Bocanegra D, Bracher PJ, Branscomb E, Kidd R, McGlynn SE, Meier DH, Nitschke W, Shibuya T, Vance S, White L, Kanik I (2014) The drive to life on wet and icy worlds. Astrobiology 14:308–343. doi: 10.1089/ast.2013.1110 PubMedPubMedCentralCrossRefGoogle Scholar
  126. Sagan C, Reid Thompson W, Carlson R, Gurnett D, Hord C (1993) A search for life on earth from the Galileo spacecraft. Nature 365:715–721PubMedCrossRefGoogle Scholar
  127. Schidlowski M (1988) A 3800-million-year isotopic record of life from carbon in sedimentary rocks. Nature 333:313–318CrossRefGoogle Scholar
  128. Schoepp-Cothenet B, van Lis R, Philippot P, Magalon A, Russell MJ, Nitschke W (2012) The ineluctable requirement for the trans-iron elements molybdenum and/or tungsten in the origin of life. Nat Sci Rep, 2:263. doi: 10.1038/srep00263 Google Scholar
  129. Schoepp-Cothenet B, van Lis R, Atteia A, Baymann F, Capowiez L, Ducluzeau AL, Duval S, ten Brink F, Russell MJ, Nitschke W (2013) On the universal core of bioenergetics. Biochim Biophys Acta Bioenergetics 1827(2):79–93CrossRefGoogle Scholar
  130. Schrödinger, E. (1967) What Is Life? [With Forward by Penrose] Cambridge Univ Press.Google Scholar
  131. Schwartzman, D. and Lineweaver, C. (2005) Temperature, Biogenesis, and Biospheric Self-Organization. Chapter 16 in Non-equilibrium Thermodynamics and the Production of Entropy, Kleidon, A., and Lorenz, R. D. (Eds.). Non-equilibrium thermodynamics and the production of entropy: life, earth, and beyond. Springer Science & Business Media. 207–221.Google Scholar
  132. Shock EL (1992) Chemical environments of submarine hydrothermal systems. Orig Life Evol Biosph 22:67–107PubMedCrossRefGoogle Scholar
  133. Simoncini E, Virgo N, Kleidon A (2013) Quantifying drivers of chemical disequilibrium: theory and application to methane in the Earth’s atmosphere. Earth System Dynamics 4:1–15CrossRefGoogle Scholar
  134. Simoncini, E., Grassi, T., Brucato, J. R. (2015) Disequilibrium in planetary atmospheres: a first calculation for Earth using KROME, submitted to OLEB.Google Scholar
  135. Sleep NH, Bird DK, Pope E (2012) Paleontology of Earth’s mantle. Annu Rev Earth Planet Sci 40:277–300CrossRefGoogle Scholar
  136. Sojo V, Herschy B, Whicher A, Camprubí E, Lane N (2016) The origin of life in alkaline hydrothermal vents. Astrobiology 16(2):181–197PubMedCrossRefGoogle Scholar
  137. Szent-Györgyi A (1979) The living state and cancer, IN: Submolecular biology and cancer. In: Ciba Foundation Symposium 67. Excerpta Medica pp, New York, pp. 3–18Google Scholar
  138. Trail D, Watson EB, Tailby ND (2011) The oxidation state of hadean magmas and implications for early Earth’s atmosphere. Nature 480:79–82PubMedCrossRefGoogle Scholar
  139. Trail D, Watson EB, Tailby ND (2012) Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochim Cosmochim Acta 97:70–87CrossRefGoogle Scholar
  140. Trolard F, Bourrié G (2012) Fougerite a natural layered double hydroxide in gley soil: habitus, structure, and some properties. In: Clay minerals in nature: their characterization, modification and application, edited by M. Valaskova and G.S. Martynkova, InTech, Rijeka, Croatia, pp. 171–188Google Scholar
  141. Turner JS (1979) Buoyancy effects in fluids. Cambridge University PressGoogle Scholar
  142. Ueno Y, Yurimoto H, Yoshioka H, Komiya T, Maruyama S (2002) Ion microprobe analysis of graphite from ca. 3.8 Ga metasediments, Isua supracrustal belt, West Greenland: relationship between metamorphism and carbon isotopic composition. Geochim Cosmochim Acta 66(7):1257–1268CrossRefGoogle Scholar
  143. Underwood DR, Jones BW, Sleep PN (2003) The evolution of habitable zones during stellar lifetimes and its implications on the search for extraterrestrial life. Int J Astrobiol 2:289CrossRefGoogle Scholar
  144. Vance S, Harnmeijer J, Kimura J, Hussmann H, Demartin B, Brown JM (2007) Hydrothermal systems in small ocean planets. Astrobiology 7(6):987–1005PubMedCrossRefGoogle Scholar
  145. Vladilo G, Murante G, Silva L, Provenzale A, Ferri G, Ragazzini G (2013) The habitable zone of earth-like planets with different levels of atmospheric pressure. ApJ 767(1):65CrossRefGoogle Scholar
  146. Wade J, Wood BJ (2005) Core formation and the oxidation state of the Earth. Earth Planet Sci Lett 236(1-2):78–95CrossRefGoogle Scholar
  147. Wald G (1962) Life in the second and third periods; or why phosphorous and Sulphur for high energy bonds? In: Kasha M, Pullman B (eds) Horizons in biochemistry. Academic Press, New York, pp. 127–141Google Scholar
  148. Wang W, Song Y, Wang X, Yang Y, Liu X (2015) Alpha-Oxo Acids Assisted Transformation of FeS to Fe3S4 at Low Temperature: Implications for Abiotic, Biotic, and Prebiotic Mineralization. Astrobiology 15(12):1043–1051PubMedCrossRefGoogle Scholar
  149. Webster CR, Mahaffy PR, Atreya SK, Flesch GJ, Mischna MA, Meslin PY, Battalio M (2014) Mars methane detection and variability at gale crater. Science 1261713Google Scholar
  150. Westheimer FH (1987) Why nature chose phosphates. Science 235(4793):1173–1178PubMedCrossRefGoogle Scholar
  151. Wetherill GW (1985) Asteroidal source of ordinary chondrites. Meteoritics 20:1–22CrossRefGoogle Scholar
  152. White LM, Bhartia R, Stucky GD, Kanik I, Russell MJ (2015) Mackinawite and greigite in ancient alkaline hydrothermal chimneys: identifying potential key catalysts for emergent life. Earth Planet Sci Lett 430:105–114CrossRefGoogle Scholar
  153. Wicken JS (1987) Evolution. Thermodynamics and Information Oxford University PressGoogle Scholar
  154. Wilde, S.A., Valley, J.W., Peck, W.H., and Graham, C.M. (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 gyr ago: Nature, v. 409, p. 175–178.Google Scholar
  155. Williams RJP (1961) Functions of chains of catalysts. J Theor Biol 1:1–13PubMedCrossRefGoogle Scholar
  156. Williams RJP (1965) Electron migration in iron compounds. In: San Pietro A (ed) Non-Heme iron proteins: role in energy conversion, The Antioch Press. Yellow Springs, Ohio, pp. 7–22Google Scholar
  157. Wood BJ, Bryndzia LT, Johnson KE (1990) Mantle oxidation state and its relation to tectonic environment and fluid speciation. Science 248:337–345PubMedCrossRefGoogle Scholar
  158. Wood BJ, Walter MJ, Wade J (2006) Accretion of the earth and segregation of its core. Nature 441:825–833PubMedCrossRefGoogle Scholar
  159. Xing GF, Wang XL, Wan Y, Chen ZH, Jiang Y, Kitajima K, Ushikubo T, Gopon P (2014) Diversity in early crustal evolution: 4100 [emsp14] Ma zircons in the Cathaysia block of southern China. Scientific Reports 4Google Scholar
  160. Yamaguchi A, Inuzuka R, Takashima T, Hayashi T, Hashimoto K, Nakamura R (2014a) Regulating proton-coupled electron transfer for efficient water splitting by manganese oxides at neutral pH Nature communications:5Google Scholar
  161. Yamaguchi A, Yamamoto M, Takai K, Ishii T, Hashimoto K, Nakamura R (2014b) Electrochemical CO2 reduction by Ni-containing iron sulfides: how is CO2 electrochemically reduced at bisulfide-bearing deep-sea hydrothermal precipitates? Electrochim Acta 141(20):311–318. doi: 10.1016/j.electacta.2014.07.078
  162. Yung YL, McElroy MB (1979) Fixation of nitrogen in the prebiotic atmosphere. Science 203:1002–1004PubMedCrossRefGoogle Scholar
  163. Zhang C, Dehoff K, Hess N, Oostrom M, Wietsma TW, Valocchi AJ, Fouke BW, Werth CJ (2010) Pore-Scale Study of Transverse Mixing Induced CaCO3 Precipitation and Permeability Reduction in a Model Subsurface Sedimentary System. Environ Sci Technol 44(20):7833–7838PubMedCrossRefGoogle Scholar
  164. Zsom A, Seager S, De Wit J (2013) Toward the minimum inner edge distance of the habitable zone. Astrophys J 778:109CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • L. M. Barge
    • 1
    • 2
    Email author
  • E. Branscomb
    • 3
  • J. R. Brucato
    • 4
  • S. S. S. Cardoso
    • 5
  • J. H. E. Cartwright
    • 6
    • 7
  • S. O. Danielache
    • 8
    • 9
  • D. Galante
    • 10
  • T. P. Kee
    • 11
  • Y. Miguel
    • 12
  • S. Mojzsis
    • 13
  • K. J. Robinson
    • 14
  • M. J. Russell
    • 1
    • 2
  • E. Simoncini
    • 4
  • P. Sobron
    • 15
    • 16
  1. 1.NASA Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Icy Worlds TeamNASA Astrobiology InstituteMountain ViewUSA
  3. 3.Carl R. Woese Institute for Genomic BiologyUniversity of Illinois, Urbana-ChampaignChampaignUSA
  4. 4.Astrophysical Observatory of ArcetriFlorenceItaly
  5. 5.Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeUK
  6. 6.Instituto Andaluz de Ciencias de la TierraCSIC–Universidad de GranadaGranadaSpain
  7. 7.Instituto Carlos I de Física Teórica y ComputacionalUniversidad de GranadaGranadaSpain
  8. 8.Sophia UniversityTokyoJapan
  9. 9.Earth and Life Science InstituteTokyo Technical UniversityTokyoJapan
  10. 10.Brazilian Synchrotron Light Laboratory, LNLS / CNPEMCampinasBrazil
  11. 11.School of ChemistryUniversity of LeedsLeedsUK
  12. 12.Observatoire de Côte d’AzurNiceFrance
  13. 13.Department of Geological SciencesUniversity of ColoradoBoulderUSA
  14. 14.School of Molecular Sciences and School of Earth & Space ExplorationArizona State UniversityTempeUSA
  15. 15.Carl Sagan CenterSETI InstituteMountain ViewUSA
  16. 16.Impossible SensingSt. LouisUSA

Personalised recommendations