Origins of Life and Evolution of Biospheres

, Volume 46, Issue 4, pp 361–368 | Cite as

Proton-Induced Collisions on Potential Prebiotic Species



With regard to the fascinating question of the origin of life, special interest has been devoted to potential prebiotic molecules which could drive the emergence of life. In the widely discussed hypothesis of a possible exogen apparition of life, the transport of those prebiotic species and their survival under spatial conditions is of strong interest. In particular their stability under solar radiation or in collisions with bare nucleus has to be considered. In that sense, taking account of the abundance of protons in ionized clouds of the interstellar medium, we have developed a detailed theoretical study of the charge transfer collision dynamics induced by impact of protons on a series of possible prebiotic compounds. Three main types of molecules have been considered: first of all the DNA and RNA building blocks with on a one hand the nucleobases uracil and thymine, and on the other hand the 2-deoxy-D-ribose sugar skeleton in its furanose and pyranose forms. The study has been extended to the 2-aminooxazole suggested to be a possible precursor of RNA nucleotides. The theoretical treatment involves ab-initio quantum chemistry molecular calculations followed by a semiclassical collision dynamics. Some qualitative trends may be suggested for the proton-induced damage of such prebiotic species.


Prebiotic species Charge transfer processes Proton-biomolecule collisions Ab-initio molecular calculations 


  1. Allan RJ, Courbin C, Salas P, Wahnon P (1990) State-selective effects in the differential cross section for electron capture from laser-excited Sodium atoms by protons. J Phys B 23:L461-L466.
  2. Almeida D, Bacchus-Montabonel MC, Fereira da Silva F, García G, Limão-Vieira P (2014) Potassium-Uracil/Thymine ring cleavage enhancement as studied in electron transfer experiments and theoretical calculations. J Phys Chem A 118:6547–6552CrossRefPubMedGoogle Scholar
  3. Alvarado F, Bari S, Hoekstra R, Schlathölter T (2006) Quantification of ion-induced molecular fragmentation of isolated 2-Deoxy-D-ribose molecules. Phys Chem Chem Phys 8:1922–1928CrossRefPubMedGoogle Scholar
  4. Bacchus-Montabonel MC (1999) Theoretical treatment of electron-capture processes in ion-molecule collisions: B3+ + H2 as a test case. Phys Rev A 59:3569–3575CrossRefGoogle Scholar
  5. Bacchus-Montabonel MC (2011) Radiative and collisional processes in space chemistry. Rend Fis Acc Lincei 22:95–103CrossRefGoogle Scholar
  6. Bacchus-Montabonel MC (2013) Looking at radiation damage on prebiotic building blocks. J Phys Chem A 117:14169–14175CrossRefPubMedGoogle Scholar
  7. Bacchus-Montabonel MC (2014) Ab-initio treatment of ion-induced charge transfer dynamics of isolated 2-Deoxy-D-ribose. J Phys Chem A 118:6326–6332CrossRefPubMedGoogle Scholar
  8. Bacchus-Montabonel MC (2015a) Proton-induced damage on 2-aminooxazole, a potential prebiotic compound. J Phys Chem A 119:728–734CrossRefPubMedGoogle Scholar
  9. Bacchus-Montabonel MC (2015b) Conformation and orientation dependence in ion-induced collisions with DNA and RNA building blocks. Eur Phys J D 69:107CrossRefGoogle Scholar
  10. Bacchus-Montabonel MC, Calvo F (2015) Nanohydration of uracil: emergence of three-dimensional structures and proton-induced charge transfer. Phys Chem Chem Phys 17:9629–9633CrossRefPubMedGoogle Scholar
  11. Bacchus-Montabonel MC, Tergiman YS (2006) Anisotropic effect in the charge transfer of Cq+ ions with Uracil. Phys Rev A 74:054702CrossRefGoogle Scholar
  12. Bacchus-Montabonel MC, Tergiman YS (2011a) Charge transfer dynamics of carbon ions with Uracil and halouracil targets at low collision energies. Chem Phys Lett 503:45–48CrossRefGoogle Scholar
  13. Bacchus-Montabonel MC, Tergiman YS (2011b) An ab-initio study of ion induced charge transfer dynamics in collision of carbon ions with Thymine. Phys Chem Chem Phys 13:9761–9767CrossRefPubMedGoogle Scholar
  14. Bacchus-Montabonel MC, Tergiman YS (2012) Radiation damage on biomolecular systems: dynamics of ion induced collision processes. Comput Theor Chem 990:177–184CrossRefGoogle Scholar
  15. Bacchus-Montabonel MC, Talbi D, Persico M (2000) Quantum chemical determination of the rate coefficients for radiative association of CH3 + and H2. J Phys B 33:955–959CrossRefGoogle Scholar
  16. Bacchus-Montabonel MC, Łabuda M, Tergiman YS, Sienkiewicz JE (2005) Theoretical treatment of charge-transfer processes induced by collision of Cq+ ions with Uracil. Phys Rev A 72:052706CrossRefGoogle Scholar
  17. Bene E, Martinez P, Halász GJ, Vibók Á, Bacchus-Montabonel MC (2009) Charge transfer in collisions of C2+ carbon ions with CO and OH Targets. Phys Rev A 80:012711CrossRefGoogle Scholar
  18. Chenel A, Mangaud E, Justum Y, Talbi D, Bacchus-Montabonel MC, Desouter-Lecomte M (2010) Quantum dynamics of the charge transfer in C+ + S at low collision energies. J Phys B 43:245701CrossRefGoogle Scholar
  19. Cooper GW, Onwo WM, Cronin JR (1992) Alkyl phosphoric acids and sulfonic acids in the Murchison meteorite. Geochim Cosmochim Acta 56:4109–4115CrossRefPubMedGoogle Scholar
  20. Crick FHC (1968) The origin of the genetic code. J Mol Biol 38:367–379CrossRefPubMedGoogle Scholar
  21. de Marcellus P, Bertrand M, Nuevo M, Westall F, d’Hendecourt LL (2011) Prebiotic significance of extraterrestrial ice photochemistry: detection of Hydantoin in organic residues. Astrobiology 11:847–854CrossRefPubMedGoogle Scholar
  22. de Vries J, Hoekstra R, Morgenstern R, Schlathölter T (2002) Cq+-induced excitation and fragmentation of uracil: effects of the projectile electronic structure. J Phys B 35:4373–4381CrossRefGoogle Scholar
  23. Deng Z, Bald I, Illenberger E, Huels MA (2005) Beyond the Bragg peak: hyperthermal heavy ion damage to DNA components. Phys Rev Lett 95:153201CrossRefPubMedGoogle Scholar
  24. Ehrenfreund P, Irvine W, Becker L, Blank J, Brucato R, Colangeli L, Derenne S, Despois D, Dutrey A, Fraaije H, Lazcano A, Owen T, Robert F (2002) Astrophysical and astrochemical insights into the origin of life. Rep Prog Phys 65:1427–1488CrossRefGoogle Scholar
  25. Fraija F, Allouche AR, Bacchus-Montabonel MC (1994) Ab-initio teatment of electron-capture by B4+ ions from atomic hydrogen. Phys Rev A 49:272–276CrossRefPubMedGoogle Scholar
  26. Hervé du Penhoat MA, Lopez-Tarifa P, Ghose KK, Jeanvoine Y, Gaigeot MP, Vuilleumier R, Politis MF, Bacchus-Montabonel MC (2014) Modeling proton-induced damage on 2-Deoxy-D-ribose. Conformational analysis. J Mol Model 20:2221CrossRefGoogle Scholar
  27. Huber C, Eisenreich W, Hecht S, Wächtershäuser GA (2003) Possible primordial peptide cycle. Science 301:938–940CrossRefPubMedGoogle Scholar
  28. Joyce GF (2002) The antiquity of RNA-based evolution. Nature 418:214–221CrossRefPubMedGoogle Scholar
  29. Linguerri R, Hochlaf M, Bacchus-Montabonel MC, Desouter-Lecomte M (2013) Characterization of the MgO2+ dication in the gas phase: electronic states, spectroscopy and atmospheric implications. Phys Chem Chem Phys 15:824–831CrossRefPubMedGoogle Scholar
  30. López-Tarifa P, Hervé du Penhoat MA, Vuilleumier R, Gaigeot MP, Tavernelli I, Le Padellec A, Champeaux JP, Alcamí M, Moretto-Capelle P, Martín F, Politis MF (2011) Ultrafast nonadiabatic fragmentation dynamics of doubly charged Uracil in a gas phase. Phys Rev Lett 107:023202CrossRefPubMedGoogle Scholar
  31. Michael BD, O’Neill PD (2000) A sting in the tail of electron tracks. Science 287:1603–1604CrossRefPubMedGoogle Scholar
  32. Miller SL, Urey HC (1959) Organic compound synthesis on the primitive earth. Science 130:245–251CrossRefPubMedGoogle Scholar
  33. Møllendal H, Konovalov A (2010) Microwave spectrum of 2-aminooxazole, a compound of potential prebiotic and astrochemical interest. J Phys Chem A 114:2151–2156CrossRefPubMedGoogle Scholar
  34. Orgel LE (1968) Evolution of the genetic apparatus. J Mol Biol 38:381–393CrossRefPubMedGoogle Scholar
  35. Powner MW, Gerland B, Sutherland JD (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459:239–242CrossRefPubMedGoogle Scholar
  36. Stancil PC, Zygelman B, Kirby K (1998) Calculations of electron capture in low energy ion-molecule collisions. In: Aumayr F, Winter HP (eds) Photonic, electronic, and atomic collisions. World Scientific, Singapore, pp 537–548Google Scholar
  37. Szabla R, Šponer JE, Šponer J, Góra RW (2013a) Theoretical studies of the mechanism of 2-aminooxazole formation under prebiotically plausible conditions. Phys Chem Chem Phys 15:7812–7818CrossRefPubMedGoogle Scholar
  38. Szabla R, Tuna D, Góra RW, Šponer J, Sobolewski AL, Domke W (2013b) Photochemistry of 2-aminooxazole, a hypothetical prebiotic precursor of RNA nucleotides. J Phys Chem Lett 4:2785–2788CrossRefGoogle Scholar
  39. Werner HJ, Knowles PJ, Knizia G, Manby FR, Schütz M, Celani P, Korona T, Lindh R, Mitrushenkov A, Rauhut G, Shamasundar KR, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Köppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklass A, O’Neill DP, Palmieri P, Peng D, Pflüger K, Pitzer R, Reiher M, Shiozaki T, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M (2012) MOLPRO Package of ab-initio programs (version 2012.1)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Institut Lumière matière, UMR5306 Université Lyon 1-CNRS, Université de LyonVilleurbanne CedexFrance

Personalised recommendations