Advertisement

Origins of Life and Evolution of Biospheres

, Volume 46, Issue 4, pp 351–359 | Cite as

Which Type of Planets do We Expect to Observe in the Habitable Zone?

  • Vardan AdibekyanEmail author
  • Pedro Figueira
  • Nuno C. Santos
Astrobiology

Abstract

We used a sample of super-Earth-like planets detected by the Doppler spectroscopy and transit techniques to explore the dependence of orbital parameters of the planets on the metallicity of their host stars. We confirm the previous results (although still based on small samples of planets) that super-Earths orbiting around metal-rich stars are not observed to be as distant from their host stars as we observe their metal-poor counterparts to be. The orbits of these super-Earths with metal-rich hosts usually do not reach into the Habitable Zone (HZ), keeping them very hot and inhabitable. We found that most of the known planets in the HZ are orbiting their GK-type hosts which are metal-poor. The metal-poor nature of planets in the HZ suggests a high Mg abundance relative to Si and high Si abundance relative to Fe. These results lead us to speculate that HZ planets might be more frequent in the ancient Galaxy and had compositions different from that of our Earth.

Keywords

Planet composition Stellar abundances Habitability Planetary orbits 

Notes

Acknowledgments

This work was supported by Fundação para a Ciência e a Tecnologia (FCT) through the research grant UID/FIS/04434/2013. V.A. acknowledges the support from the Fundação para a Ciência e Tecnologia, FCT (Portugal) in the form of the grant SFRH/BPD/70574/2010. P.F. and N.C.S. also acknowledge the support from FCT through Investigador FCT contracts of reference IF/01037/2013 and IF/00169/2012, respectively, and POPH/FSE (EC) by FEDER funding through the program “Programa Operacional de Factores de Competitividade - COMPETE”. PF further acknowledges support from Fundação para a Ciência e a Tecnologia (FCT) in the form of an exploratory project of reference IF/01037/2013CP1191/CT0001. This work results within the collaboration of the COST Action TD 1308. We would like to thank João Faria for his interesting comments and suggestions.

References

  1. Adibekyan V, Santos NC, Figueira P, Dorn C, Sousa SG, Delgado-Mena E, Israelian G, Hakobyan AA, Mordasini C (2015) From stellar to planetary composition: Galactic chemical evolution of Mg/Si mineralogical ratio. Astron Astrophys 581:L2. doi: 10.1051/0004-6361/201527059. 1508.04970CrossRefGoogle Scholar
  2. Adibekyan VZ, Delgado Mena E, Sousa SG, Santos NC, Israelian G, González Hernández JI, Mayor M, Hakobyan AA (2012a) Exploring the α-enhancement of metal-poor planet-hosting stars. The Kepler and HARPS samples. Astron Astrophys 547:A36. doi: 10.1051/0004-6361/201220167. 1209.6272CrossRefGoogle Scholar
  3. Adibekyan VZ, Santos NC, Sousa SG, Israelian G, Delgado Mena E, González Hernández JI, Mayor M, Lovis C, Udry S (2012b) Overabundance of α-elements in exoplanet-hosting stars. Astron Astrophys 543:A89. doi: 10.1051/0004-6361/201219564. 1205.6670CrossRefGoogle Scholar
  4. Adibekyan VZ, Figueira P, Santos NC, Mortier A, Mordasini C, Delgado Mena E, Sousa SG, Correia ACM, Israelian G, Oshagh M (2013) Orbital and physical properties of planets and their hosts: new insights on planet formation and evolution. Astron Astrophys 560:A51. doi: 10.1051/0004-6361/201322551. 1311.2417CrossRefGoogle Scholar
  5. Alibert Y (2014) On the radius of habitable planets. Astron Astrophys 561:A41. doi: 10.1051/0004-6361/201322293. 1311.3039
  6. Beaugé C, Nesvorný D (2013) Emerging Trends in a Period-Radius Distribution of Close-in Planets. Astrophys J 763:12. doi: 10.1088/0004-637X/763/1/12. 1211.4533CrossRefGoogle Scholar
  7. Bond JC, O’Brien DP, Lauretta DS (2010) The Compositional Diversity of Extrasolar Terrestrial Planets. I. In Situ Simulations. Astrophys J 715:1050–1070. doi: 10.1088/0004-637X/715/2/1050. 1004.0971CrossRefGoogle Scholar
  8. Borucki WJ, Agol E, Fressin F, Kaltenegger L, Rowe J, Isaacson H, Fischer D, Batalha N, Lissauer JJ, Marcy GW, Fabrycky D, Désert JM, Bryson ST, Barclay T, Bastien F, Boss A, Brugamyer E, Buchhave LA, Burke C, Caldwell DA, Carter J, Charbonneau D, Crepp JR, Christensen-Dalsgaard J, Christiansen JL, Ciardi D, Cochran WD, DeVore E, Doyle L, Dupree AK, Endl M, Everett ME, Ford EB, Fortney J, Gautier TN, Geary JC, Gould A, Haas M, Henze C, Howard AW, Howell SB, Huber D, Jenkins JM, Kjeldsen H, Kolbl R, Kolodziejczak J, Latham DW, Lee BL, Lopez E, Mullally F, Orosz JA, Prsa A, Quintana EV, Sanchis-Ojeda R, Sasselov D, Seader S, Shporer A, Steffen JH, Still M, Tenenbaum P, Thompson SE, Torres G, Twicken JD, Welsh WF, Winn JN (2013) Kepler-62: A Five-Planet System with Planets of 1.4 and 1.6 Earth Radii in the Habitable Zone. Science 340:587–590. doi: 10.1126/science.1234702. 1304.7387CrossRefPubMedGoogle Scholar
  9. Buchhave LA, Latham DW (2015) The Metallicities of Stars with and without Transiting Planets. Astrophys J 808:187. doi: 10.1088/0004-637X/808/2/187. 1507.03557CrossRefGoogle Scholar
  10. Buchhave LA, Latham DW, Johansen A, Bizzarro M, Torres G, Rowe JF, Batalha NM, Borucki WJ, Brugamyer E, Caldwell C, Bryson ST, Ciardi DR, Cochran WD, Endl M, Esquerdo GA, Ford EB, Geary JC, Gilliland RL, Hansen T, Isaacson H, Laird JB, Lucas PW, Marcy GW, Morse JA, Robertson P, Shporer A, Stefanik RP, Still M, Quinn SN (2012) An abundance of small exoplanets around stars with a wide range of metallicities. Nature 486:375–377. doi: 10.1038/Nature11121 PubMedGoogle Scholar
  11. Buchhave LA, Bizzarro M, Latham DW, Sasselov D, Cochran WD, Endl M, Isaacson H, Juncher D, Marcy GW (2014) Three regimes of extrasolar planet radius inferred from host star metallicities. Nature 509:593–595. doi: 10.1038/Nature13254. 1405.7695CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cruz M, Coontz R (2013) Alien Worlds Galore. Science 340:565–565CrossRefPubMedGoogle Scholar
  13. Dawson RI, Murray-Clay RA (2013) Giant Planets Orbiting Metal-rich Stars Show SigNatures of Planet-Planet Interactions. Astrophys J Lett 767:L24. doi: 10.1088/2041-8205/767/2/L24. 1302.6244CrossRefGoogle Scholar
  14. Dawson RI, Chiang E, Lee EJ (2015) A metallicity recipe for rocky planets. Mon Not R Astron Soc 453:1471–1483. doi: 10.1093/mnras/stv1639. 1506.06867CrossRefGoogle Scholar
  15. Delgado Mena E, Israelian G, González Hernández JI, Bond JC, Santos NC, Udry S, Mayor M (2010) Chemical Clues on the Formation of Planetary Systems: C/O Versus Mg/Si for HARPS GTO Sample. Astrophys J 725:2349–2358. doi: 10.1088/0004-637X/725/2/2349. 1009.5224CrossRefGoogle Scholar
  16. Dorn C, Khan A, Heng K, Connolly JAD, Alibert Y, Benz W, Tackley P (2015) Can we constrain the interior structure of rocky exoplanets from mass and radius measurements? Astron Astrophys 577:A83. doi: 10.1051/0004-6361/201424915. 1502.03605CrossRefGoogle Scholar
  17. Gonzalez G (1997) The stellar metallicity-giant planet connection. Mon Not R Astron Soc 285:403– 412CrossRefGoogle Scholar
  18. Grasset O, Schneider J, Sotin C (2009) A Study of the Accuracy of Mass-Radius Relationships for Silicate-Rich and Ice-Rich Planets up to 100 Earth Masses. Astrophys J 693:722–733. doi: 10.1088/0004-637X/693/1/722. 0902.1640CrossRefGoogle Scholar
  19. Haywood M (2008) A peculiarity of metal-poor stars with planets? Astron Astrophys 482:673–676. doi: 10.1051/0004-6361:20079141. 0804.2954CrossRefGoogle Scholar
  20. Haywood M (2009) On the Correlation Between Metallicity and the Presence of Giant Planets. Astrophys J Lett 698:L1–L5. doi: 10.1088/0004-637X/698/1/L1. 0904.4445CrossRefGoogle Scholar
  21. Ida S, Lin DNC (2004) Toward a Deterministic Model of Planetary Formation. II. The Formation and Retention of Gas Giant Planets around Stars with a Range of Metallicities. Astrophys J 616:567–572. doi: 10.1086/424830 CrossRefGoogle Scholar
  22. Jenkins JM, Twicken JD, Batalha NM, Caldwell DA, Cochran WD, Endl M, Latham DW, Esquerdo GA, Seader S, Bieryla A, Petigura E, Ciardi DR, Marcy GW, Isaacson H, Huber D, Rowe JF, Torres G, Bryson ST, Buchhave L, Ramirez I, Wolfgang A, Li J, Campbell JR, Tenenbaum P, Sanderfer D, Henze CE, Catanzarite JH, Gilliland RL, Borucki WJ (2015) Discovery and Validation of Kepler-452b: A 1.6 R Super Earth Exoplanet in the Habitable Zone of a G2 Star. Astron J 150:56. doi: 10.1088/0004-6256/150/2/56. 1507.06723CrossRefGoogle Scholar
  23. Johnson JA, Aller KM, Howard AW, Crepp JR (2010) Giant Planet Occurrence in the Stellar Mass-Metallicity Plane. Publ Astron Soc Pac 122:905–915. doi: 10.1086/655775. 1005.3084CrossRefGoogle Scholar
  24. Kereszturi A, Noack L (2016) Review on the role of planetary factors on habitability. Origins Life Evol BGoogle Scholar
  25. Kopparapu RK, Ramirez R, Kasting JF et al (2013) Habitable Zones around Main-sequence Stars: New Estimates. Astrophys J 765:131. doi: 10.1088/0004-637X/765/2/131. 1301.6674CrossRefGoogle Scholar
  26. Lissauer JJ, Marcy GW, Rowe JF, Bryson ST, Adams E, Buchhave LA, Ciardi DR, Cochran WD, Fabrycky DC, Ford EB, Fressin F, Geary J, Gilliland RL, Holman MJ, Howell SB, Jenkins JM, Kinemuchi K, Koch DG, Morehead RC, Ragozzine D, Seader SE, Tanenbaum PG, Torres G, Twicken JD (2012) Almost All of Kepler’s Multiple-planet Candidates Are Planets. Astrophys J 750:112. doi: 10.1088/0004-637X/750/2/112. 1201.5424CrossRefGoogle Scholar
  27. Mayor M, Queloz D (1995) A Jupiter-mass companion to a solar-type star. Nature 378:355–359. doi: 10.1038/378355a0 CrossRefGoogle Scholar
  28. Mordasini C, Alibert Y, Benz W, Klahr H, Henning T (2012) Extrasolar planet population synthesis. IV. Correlations with disk metallicity, mass, and lifetime. Astron Astrophys 541:A97. doi: 10.1051/0004-6361/201117350. 1201.1036CrossRefGoogle Scholar
  29. Mortier A, Santos NC, Sousa S, Israelian G, Mayor M, Udry S (2013) On the functional form of the metallicity-giant planet correlation. Astron Astrophys 551:A112. doi: 10.1051/0004-6361/201220707. 1302.1851CrossRefGoogle Scholar
  30. Nayakshin S, Fletcher M (2015) Tidal Downsizing model - III. Planets from sub-Earths to brown dwarfs: structure and metallicity preferences. Mon Not R Astron Soc 452:1654–1676. doi: 10.1093/mnras/stv1354. 1504.02365CrossRefGoogle Scholar
  31. Owen JE, Wu Y (2013) Kepler Planets: A Tale of Evaporation. Astrophys J 775:105. doi: 10.1088/0004-637X/775/2/105. 1303.3899CrossRefGoogle Scholar
  32. Rogers LA, Seager S (2010) A Framework for Quantifying the Degeneracies of Exoplanet Interior Compositions. Astrophys J 712:974–991. doi: 10.1088/0004-637X/712/2/974. 0912.3288CrossRefGoogle Scholar
  33. Santos NC, Israelian G, Mayor M (2001) The metal-rich Nature of stars with planets. Astron Astrophys 373:1019–1031. doi: 10.1051/0004-6361:20010648. astro-ph/0105216CrossRefGoogle Scholar
  34. Santos NC, Israelian G, Mayor M (2004) Spectroscopic [Fe/H] for 98 extra-solar planet-host stars. Exploring the probability of planet formation. Astron Astrophys 415:1153–1166. doi: 10.1051/0004-6361:20034469. astro-ph/0311541CrossRefGoogle Scholar
  35. Santos NC, Sousa SG, Mortier A, Neves V, Adibekyan V, Tsantaki M, Delgado Mena E, Bonfils X, Israelian G, Mayor M, Udry S (2013) SWEET-Cat: A catalogue of parameters for Stars With ExoplanETs. I. New atmospheric parameters and masses for 48 stars with planets. Astron Astrophys 556:A150. doi: 10.1051/0004-6361/201321286. 1307.0354CrossRefGoogle Scholar
  36. Santos NC, Adibekyan V, Mordasini C, Benz W, Delgado-Mena E, Dorn C, Buchhave L, Figueira P, Mortier A, Pepe F, Santerne A, Sousa SG, Udry S (2015) Constraining planet structure from stellar chemistry: the cases of CoRoT-7, Kepler-10, and Kepler-93. Astron Astrophys 580:L13. doi: 10.1051/0004-6361/201526850. 1507.08081CrossRefGoogle Scholar
  37. Sousa SG, Santos NC, Mayor M, Udry S, Casagrande L, Israelian G, Pepe F, Queloz D, Monteiro MJPFG (2008) Spectroscopic parameters for 451 stars in the HARPS GTO planet search program. Stellar [Fe/H] and the frequency of exo-Neptunes. Astron Astrophys 487:373–381. doi: 10.1051/0004-6361:200809698. 0805.4826CrossRefGoogle Scholar
  38. Sousa SG, Santos NC, Israelian G, Mayor M, Udry S (2011) Spectroscopic stellar parameters for 582 FGK stars in the HARPS volume-limited sample. Revising the metallicity-planet correlation. Astron Astrophys 533:A141. doi: 10.1051/0004-6361/201117699. 1108.5279CrossRefGoogle Scholar
  39. Thiabaud A, Marboeuf U, Alibert Y, Cabral N, Leya I, Mezger K (2014) From stellar nebula to planets: The refractory components 562:A27. doi: 10.1051/0004-6361/201322208. 1312.3085
  40. Thiabaud A, Marboeuf U, Alibert Y, Leya I, Mezger K (2015) Elemental ratios in stars vs planets. Astron Astrophys 580:A30. doi: 10.1051/0004-6361/201525963. 1507.01343CrossRefGoogle Scholar
  41. Tuomi M, Anglada-Escudé G, Gerlach E, Jones HRA, Reiners A, Rivera EJ, Vogt SS, Butler RP (2013) Habitable-zone super-Earth candidate in a six-planet system around the K2.5V star HD 40307. Astron Astrophys 549:A48. doi: 10.1051/0004-6361/201220268. 1211.1617CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Vardan Adibekyan
    • 1
    Email author
  • Pedro Figueira
    • 1
  • Nuno C. Santos
    • 1
    • 2
  1. 1.Instituto de Astrofísica e Ciências do EspaçoUniversidade do Porto, CAUPPortoPortugal
  2. 2.Departamento de Física e Astronomia, Faculdade de CiênciasUniversidade do PortoPortoPortugal

Personalised recommendations