Spontaneous Oligomerization of Nucleotide Alternatives in Aqueous Solutions

  • Karen E. Smith
  • Christopher H. House
  • Jason P. Dworkin
  • Michael P. Callahan
Prebiotic Chemistry

Abstract

On early Earth, a primitive polymer that could spontaneously form from likely available precursors may have preceded both RNA and DNA as the first genetic material. Here, we report that heated aqueous solutions containing 5-hydroxymethyluracil (HMU) result in oligomers of uracil, heated solutions containing 5-hydroxymethylcytosine (HMC) result in oligomers of cytosine, and heated solutions containing both HMU and HMC result in mixed oligomers of uracil and cytosine. Oligomerization of hydroxymethylated pyrimidines, which may have been abundant on the primitive Earth, might have been important in the development of simple informational polymers.

Keywords

Liquid chromatography Mass spectrometry Oligomerization Prebiotic chemistry Pyrimidines 

Notes

Acknowledgments

This research was supported by the NASA Pennsylvania Space Grant Consortium, NASA Astrobiology Institute via the Penn State Astrobiology Research Center (cooperative agreement #NNA09DA76A), and the NASA Astrobiology Institute via the Goddard Center for Astrobiology. We thank Prof. Jim Kubicki (Penn State) for assistance with DFT calculations. We also thank Dr. Henderson (Jim) Cleaves (Institute for Advanced Study/Tokyo Institute of Technology) for helpful discussions.

References

  1. Cafferty BJ, Gallego I, Chen MC, Farley KI, Eritja R, Hud NV (2013) Efficient self-assembly in water of long noncovalent polymers by nucleobase analogues. J Am Chem Soc 135(7):2447–2450CrossRefPubMedGoogle Scholar
  2. Callahan MP, Smith KE, Cleaves HJ, Ruzicka J, Stern JC, Glavin DP, House CH, Dworkin JP (2011) Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proc Natl Acad Sci U S A 108(34):13995–13998CrossRefPubMedPubMedCentralGoogle Scholar
  3. Cech TR, Zaug AJ, Grabowski PJ (1981) In vitro splicing of the ribosomal RNA precursor of Tetrahymena: Involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell 27(3):487–496CrossRefPubMedGoogle Scholar
  4. Cech TR (1987) The chemistry of self-splicing RNA and RNA enzymes. Science 236(4808):1532–1539CrossRefPubMedGoogle Scholar
  5. Cleaves HJ (2001) Studies in prebiotic synthesis and the origins of the metabolic pathways. PhD thesis, University of California, San Diego (USA)Google Scholar
  6. Cleaves HJ (2008) The prebiotic geochemistry of formaldehyde. Precambrian Res 164(3–4):111–118CrossRefGoogle Scholar
  7. Cleaves HJ, Bada JL (2012) The prebiotic chemistry of alternative nucleic acids. In: Seckbach J (ed) Genesis – In the Beginning. Springer, New York, pp. 3–33CrossRefGoogle Scholar
  8. Dworkin JP, Lazcano A, Miller SL (2003) The roads to and from the RNA world. J Theor Biol 222(1):127–134CrossRefPubMedGoogle Scholar
  9. Ferris JP, Hill AR, Liu RH, Orgel LE (1996) Synthesis of long prebiotic oligomers on mineral surfaces. Nature 381(6577):59–61CrossRefPubMedGoogle Scholar
  10. Gilbert W (1986) Origin of life: the RNA world. Nature 319(6055):618CrossRefGoogle Scholar
  11. Joyce GF, Schwartz AW, Miller SL, Orgel LE (1987) The case for an ancestral genetic system involving simple analogues of the nucleotides. Proc Natl Acad Sci U S A 84(13):4398–4402CrossRefPubMedPubMedCentralGoogle Scholar
  12. Keefe AD, Miller SL (1995) Are polyphosphates or phosphate esters prebiotic reagents? J Mol Evol 41(6):693–702CrossRefPubMedGoogle Scholar
  13. Larralde R, Robertson M, Miller SL (1995) Rates of decomposition of ribose and other sugars: implications for chemical evolution. Proc Natl Acad Sci U S A 92(18):8158–8160CrossRefPubMedPubMedCentralGoogle Scholar
  14. Lazcano A, Miller SL (1996) The origin and early evolution of life: prebiotic chemistry, the pre-RNA world, and time. Cell 85(6):793–798CrossRefPubMedGoogle Scholar
  15. Oró J (1961) Mechanism of synthesis of adenine from hydrogen cyanide under possible primitive Earth conditions. Nature 191(479):1193–1194CrossRefPubMedGoogle Scholar
  16. Robertson MP, Miller SL (1995) Prebiotic synthesis of 5-substituted uracils: a bridge between the RNA world and the DNA-protein world. Science 268(5211):702–705CrossRefPubMedGoogle Scholar
  17. Schwartz AW, Bakker CG (1989) Was adenine the first purine? Science 245(4922):1102–1104CrossRefPubMedGoogle Scholar
  18. Schwartz AW (2013) Evaluating the plausibility of prebiotic multistage syntheses. Astrobiology 13(8):784–789CrossRefPubMedGoogle Scholar
  19. Turk RM, Chumachenko NV, Yarus M (2010) Multiple translational products from a five-nucleotide ribozyme. Proc Natl Acad Sci U S A 107(10):4585–4589CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Karen E. Smith
    • 1
  • Christopher H. House
    • 1
  • Jason P. Dworkin
    • 2
  • Michael P. Callahan
    • 2
    • 3
  1. 1.Department of Geosciences and Penn State Astrobiology Research CenterPennsylvania State UniversityUniversity ParkUSA
  2. 2.Solar System Exploration Division and Goddard Center for AstrobiologyNational Aeronautics and Space Administration Goddard Space Flight CenterGreenbeltUSA
  3. 3.Department of Chemistry and BiochemistryBoise State UniversityBoiseUSA

Personalised recommendations