Temperature oscillations near natural nuclear reactor cores and the potential for prebiotic oligomer synthesis

  • Zachary R. AdamEmail author
Prebiotic Chemistry


Geologic settings capable of driving prebiotic oligomer synthesis reactions remain a relatively unexplored aspect of origins of life research. Natural nuclear reactors are an example of Precambrian energy sources that produced unique temperature fluctuations. Heat transfer models indicate that water-moderated, convectively-cooled natural fission reactors in porous host rocks create temperature oscillations that resemble those employed in polymerase chain reaction (PCR) devices to artificially amplify oligonucleotides. This temperature profile is characterized by short-duration pulses up to 70–100 °C, followed by a sustained period of temperatures in the range of 30–70 °C, and finally a period of relaxation to ambient temperatures until the cycle is restarted by a fresh influx of pore water. For a given reactor configuration, temperature maxima and the time required to relax to ambient temperatures depend most strongly on the aggregate effect of host rock permeability in decreasing the thermal expansion and increasing the viscosity and evaporation temperature of the pore fluids. Once formed, fission-fueled reactors can sustain multi-kilowatt-level power production for 105–106 years, ensuring microenvironmental longevity and chemical output. The model outputs indicate that organic synthesis on young planetary bodies with a sizeable reservoir of fissile material can involve more sophisticated energy dissipation pathways than modern terrestrial analog settings alone would suggest.


Polymerization Radiolysis Oligomerization Phosphate Nucleoside 



Zachary Adam was supported by a postdoctoral fellowship from the Agouron Institute.


  1. Adam Z (2007) Actinides and life's origins. Astrobiology 7(6):852–872CrossRefPubMedGoogle Scholar
  2. Baaske P, Weinert FM, Duhr S, Lemke KH, Russell MJ, Braun D (2007) Extreme accumulation of nucleotides in simulated hydrothermal pore systems. Proc Natl Acad Sci 104(22):9346–9351PubMedCentralCrossRefPubMedGoogle Scholar
  3. Baross JA, Hoffman SE (1985) Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Orig Life Evol Biosph 15(4):327–345CrossRefGoogle Scholar
  4. Bentridi S-E, Gall B, Gauthier-Lafaye F, Seghour A, Medjadi D-E (2011) Inception and evolution of Oklo Natural nuclear Reactors. Compt Rendus Geosci 343(11):738–748CrossRefGoogle Scholar
  5. Brennecka GA, Borg LE, Hutcheon ID, Sharp MA, Anbar AD (2010) Natural variations in uranium isotope ratios of uranium ore concentrates: understanding the 238 U/235 U fractionation mechanism. Earth Planet Sci Lett 291(1):228–233Google Scholar
  6. Chan S, Nordlund T, Frauenfelder H, Harrison J, Gunsalus I (1975) Enzymatic reduction of nicotinamide adenine dinucleotide phosphate induced by radiolysis. J Biol Chem 250(2):716–719PubMedGoogle Scholar
  7. Chernyshev IV, Golubev VN, Chugaev AV, Baranova AN (2014) 238 U/235 U isotope ratio variations in minerals from hydrothermal uranium deposits. Geochem Int 52(12):1013–1029CrossRefGoogle Scholar
  8. Chyba CF, Sagan C (1997) Comets as a source of prebiotic organic molecules for the early earth. Comets and the Origin and Evolution of Life, New York, Springer, pp. 147–173Google Scholar
  9. Cockell CS (2006) The origin and emergence of life under impact bombardment: Philosophical Transactions of the Royal Society B. Biological Sciences 361(1474):1845–1856PubMedCentralCrossRefPubMedGoogle Scholar
  10. Coogan L, Cullen JT (2009) Did natural reactors form as a consequence of the emergence of oxygenic photosynthesis during the Archean. GSA Today 19(10):5CrossRefGoogle Scholar
  11. Cuney M, Mathieu R (2000) Extreme light rare earth element mobilization by diagenetic fluids in the geological environment of the oklo natural reactor zones, franceville basin, Gabon:. Geology 28(8):743–746CrossRefGoogle Scholar
  12. Deamer D, Weber AL (2010) Bioenergetics and life's origins. Cold Spring Harb Perspect Biol, 2(2):a004929CrossRefGoogle Scholar
  13. Department of Energy (1993) DOE fundamentals handbook: nuclear physics and reactor theory: Washington. D.C, U.S. Department of EnergyGoogle Scholar
  14. Dondi D, Merli D, Pretali L, Buttafava A, Faucitano A (2011) Detailed analytical study of radiolysis products of simple organic compounds as a methodological approach to investigate prebiotic chemistry—part 1. Radiat Phys Chem 80(3):403–407CrossRefGoogle Scholar
  15. Draganić I, Jovanović S, Niketić V, Draganić Z (1980) The radiolysis of aqueous acetonitrile: compounds of interest to chemical evolution studies. J Mol Evol 15(3):261–275Google Scholar
  16. Draganić Z, Niketić V, Vujošević S (1985) Radiation chemistry of an aqueous solution of glycine: compounds of interest to chemical evolution studies. J Mol Evol 22(1):82–90Google Scholar
  17. Draganić I, Draganić Z, Adloff J (1993) Radiation and radioactivity on earth and beyond. CRC press, Boca Raton, FL, p. 349Google Scholar
  18. Forsythe JG, Yu SS, Mamajanov I, Grover MA, Krishnamurthy R, Fernández FM, Hud NV (2015) Ester-mediated amide bond formation driven by wet–dry cycles: a possible path to polypeptides on the prebiotic earth. Angew Chem Int Ed 54(34):9871–9875CrossRefGoogle Scholar
  19. Gauthier-Lafaye F, Holliger P, Blanc P-L (1996) Natural fission reactors in the franceville basin, gabon: a review of the conditions and results of a “critical event” in a geologic system. Geochimica et Cosmochimica Acta 60(23):4831–4852CrossRefGoogle Scholar
  20. Gould JM, Patterson LK, Ling E, Winget GD (1979) Phosphorylation in a simple system of lipids and chloroplast ATP synthetase driven by pulsed ionising radiation. Nature 380:607–609CrossRefGoogle Scholar
  21. Hadidi A, Candresse T (2003) Polymerase chain reaction. In: Hadidi A, Flores R, Randles JW, and Semancik JS (eds), Viroids: Properties, detection, diseases and their control: Australia, Csiro Publishing, p. 115–122Google Scholar
  22. Herschy B, Whicher A, Camprubi E, Watson C, Dartnell L, Ward J, Evans JR, Lane N (2014) An origin-of-life reactor to simulate alkaline hydrothermal vents. J Mol Evol 79(5–6):213–227PubMedCentralCrossRefPubMedGoogle Scholar
  23. Kobayashi K, Kaneko T, Saito T, Oshima T (1998) Amino acid formation in gas mixtures by high energy particle irradiation. Orig Life Evol Biosph 28(2):155–165CrossRefPubMedGoogle Scholar
  24. Kuroda P (1960) Nuclear fission in the early history of the earth: Nature, v 187.Google Scholar
  25. Lahav N, White D, Chang S (1978) Peptide formation in the prebiotic era: thermal condensation of glycine in fluctuating clay environments. Science 201(4350):67–69CrossRefPubMedGoogle Scholar
  26. Lane N, Martin WF (2012) The origin of membrane bioenergetics. Cell 151(7):1406–1416CrossRefPubMedGoogle Scholar
  27. Lane N, Allen JF, Martin W (2010) How did LUCA make a living? Chemiosmosis in the Origin of Life: BioEssays 32(4):271–280PubMedGoogle Scholar
  28. Mahadevan C, Sriramadas A (1948) Monazite in the beach sands of Vizagapatam district. Proceedings Proceedings of the Indian Academy of Sciences, Section A1948 27(4):275–278Google Scholar
  29. Mahadevan V, Das GN, Rao NN (1959) Prospecting and evaluation of beach placers along the coastal belt of India. Dept. of Atomic Energy, IndiaGoogle Scholar
  30. Mallik T, Vasudevan V, Verghese PA, Machado T (1987) The black sand placer deposits of Kerala Beach, southwest India. Mar Geol 77(1):129–150CrossRefGoogle Scholar
  31. Mamajanov I, MacDonald PJ, Ying J, Duncanson DM, Dowdy GR, Walker CA, Engelhart AE, Fernández FM, Grover MA, Hud NV, Schork FJ (2014) Ester formation and hydrolysis during wet–dry cycles: generation of far-from-equilibrium polymers in a model prebiotic reaction. Macromolecules 47(4):1334–1343CrossRefGoogle Scholar
  32. Meshik A, Hohenberg C, Pravdivtseva O (2004) Record of cycling operation of the natural nuclear reactor in the Oklo/Okelobondo area in Gabon. Phys Rev Lett 93(18):182302CrossRefPubMedGoogle Scholar
  33. Miller SL, Bada JL (1988) Submarine hot springs and the origin of life. Nature 334:609–611CrossRefPubMedGoogle Scholar
  34. Mohapatra S, Behera P, Das SK (2015) Heavy mineral potentiality and alteration studies for ilmenite in astaranga beach sands, District Puri, Odisha, India. J Geosci Environ Prot 3:31–37Google Scholar
  35. Nagy B, Gauthier-Lafaye F, Holliger P, Davis D, Mossman DJ, Leventhal JS, Rigali MJ, Parnell J (1991) Organic matter and containment of uranium and fissiogenic isotopes at the oklo natural reactors. Nature 354:472–475CrossRefGoogle Scholar
  36. Nagy B, Gauthier-Lafaye F, Holliger P, Mossman DJ, Leventhal JS, Rigali MJ (1993) Role of organic matter in the Proterozoic oklo natural fission reactors, Gabon Africa:. Geology 21(7):655–658CrossRefGoogle Scholar
  37. Naudet R (1991) Des réacteurs nucléaires fossiles, Paris, France. le Commisariat a l'Energie Atomique, Eyrolles, p. 695Google Scholar
  38. Negrón-Mendoza A, Draganić Z, Navarro-González R, Draganić I (1983) Aldehydes, ketones, and carboxylic acids formed radiolytically in aqueous solutions of cyanides and simple nitriles. Radiat Res 95(2):248–261CrossRefGoogle Scholar
  39. Neuman M, Neuman W, Lane K (1970a) On the possible role of crystals in the origins of life IV. The Phosphorylation of Nucleotides: Biosystems 3(3):277–283Google Scholar
  40. Neuman M, Neuman W, Lane K (1970b) On the possible role of crystals in the origins of life.(III) the phosphorylation of adenosine to amp by apatite. Biosystems 3(3):253–259CrossRefGoogle Scholar
  41. Openshaw R, Pagel M, Poty B (1977) Fluid phases contemporaneous with sandstone diagenesis, tectonic movements and functioning of the Oklo nuclear reactors (Gabon), Natural fission reactors, Volume IAEA Symposium Proceedings, IAEA-TC-119/9, IAEA, p. 267–289Google Scholar
  42. Orgel LE (1998) The origin of life- a review of facts and speculations. Trends Biochem Sci 23(12):491–495CrossRefPubMedGoogle Scholar
  43. Oró J, Stephen-Sherwood E (1974) The prebiotic synthesis of oligonucleotides. Origins of Life 5(1-2):159–172CrossRefPubMedGoogle Scholar
  44. Pascal R, Pross A, Sutherland JD (2013) Towards an evolutionary theory of the origin of life based on kinetics and thermodynamics. Open Biology 3(11):130156PubMedCentralCrossRefPubMedGoogle Scholar
  45. Pasek MA, Lauretta D (2008) Extraterrestrial flux of potentially prebiotic C, N, and P to the Early Earth. Origins of Life and Evolution of Biospheres 38(1):5–21CrossRefGoogle Scholar
  46. Patel BH, Percivalle C, Ritson DJ, Duffy CD, Sutherland JD (2015) Common origins of RNA, Protein and Lipid Precursors in a Cyanosulfidic Protometabolism. Nat Chem 7(4):301–307PubMedCentralCrossRefPubMedGoogle Scholar
  47. Powner MW, Gerland B, Sutherland JD (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459(7244):239–242CrossRefPubMedGoogle Scholar
  48. Prasad B, Asher R (2001) Acritarch biostratigraphy and lithostratigraphic classification of Proterozoic and Lower Paleozoic sediments (Pre-unconformity sequence) of Ganga Basin, India, Dehra Dun, Geoscience Research Group, Keshava Deva Malaviya Institute of Petroleum Exploration. Oil and Natural Gas Corporation,, Paleontographica Indica,, p. 151Google Scholar
  49. Ramirez S, Navarro-Gonzalez R, Coll P, Raulin F (2001) Possible contribution of different energy sources to the production of organics in Titan's Atmosphere. Adv Space Res 27(2):261–270CrossRefPubMedGoogle Scholar
  50. Ritson DJ, Sutherland JD (2012) Prebiotic synthesis of simple sugars by photoredox systems chemistry. Nat Chem 4(11):895–899PubMedCentralCrossRefPubMedGoogle Scholar
  51. Rodriguez-Garcia M, Surman AJ, Cooper GJT, Suárez-Marina I, Hosni Z, Lee MP, Cronin L (2015) Formation of oligopeptides in high yield under simple programmable conditions. Nat Commun 6:8385PubMedCentralCrossRefPubMedGoogle Scholar
  52. Roy PS (1999) Heavy mineral beach placers in southeastern Australia; their nature and genesis. Econ Geol 94(4):567–588CrossRefGoogle Scholar
  53. Ruiz-Mirazo K, Briones C, de la Escosura A (2014) Prebiotic systems chemistry: new perspectives for the origins of life. Chem Rev 114(1):285–366CrossRefPubMedGoogle Scholar
  54. Schrauzer GN, Guth TD (1977) Photocatalytic reactions. 1. Photolysis of water and photoreduction of nitrogen on titanium dioxide. J Am Chem Soc 99(22):7189–7193CrossRefGoogle Scholar
  55. Shapiro R (1984) The improbability of prebiotic nucleic acid synthesis. Origins of Life 14(1–4):565–570CrossRefPubMedGoogle Scholar
  56. Westheimer FH (1987) Why nature chose phosphates. Science 235(4793):1173–1178CrossRefPubMedGoogle Scholar
  57. Williams GE (1997) Precambrian length of day and the validity of tidal rhythmite paleotidal values. Geophys Res Lett 24(4):421–424CrossRefGoogle Scholar
  58. Zahnle K, Walker JC (1987) A constant daylength during the Precambrian era?:. Precambrian Res 37(2):95–105CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Earth and Planetary SciencesHarvard UniversityCambridgeUSA
  2. 2.Blue Marble Space Institute of ScienceSeattleUSA

Personalised recommendations