Chemical Analysis of a “Miller-Type” Complex Prebiotic Broth

Part I: Chemical Diversity, Oxygen and Nitrogen Based Polymers
  • Eva Wollrab
  • Sabrina Scherer
  • Frédéric Aubriet
  • Vincent Carré
  • Teresa Carlomagno
  • Luca Codutti
  • Albrecht Ott
Prebiotic Chemistry


In a famous experiment Stanley Miller showed that a large number of organic substances can emerge from sparking a mixture of methane, ammonia and hydrogen in the presence of water (Miller, Science 117:528–529, 1953). Among these substances Miller identified different amino acids, and he concluded that prebiotic events may well have produced many of Life’s molecular building blocks. There have been many variants of the original experiment since, including different gas mixtures (Miller, J Am Chem Soc 77:2351–2361, 1955; Oró Nature 197:862–867, 1963; Schlesinger and Miller, J Mol Evol 19:376–382, 1983; Miyakawa et al., Proc Natl Acad Sci 99:14,628–14,631, 2002). Recently some of Miller’s remaining original samples were analyzed with modern equipment (Johnson et al. Science 322:404–404, 2008; Parker et al. Proc Natl Acad Sci 108:5526–5531, 2011) and a total of 23 racemic amino acids were identified. To give an overview of the chemical variety of a possible prebiotic broth, here we analyze a “Miller type” experiment using state of the art mass spectrometry and NMR spectroscopy. We identify substances of a wide range of saturation, which can be hydrophilic, hydrophobic or amphiphilic in nature. Often the molecules contain heteroatoms, with amines and amides being prominent classes of molecule. In some samples we detect ethylene glycol based polymers. Their formation in water requires the presence of a catalyst. Contrary to expectations, we cannot identify any preferred reaction product. The capacity to spontaneously produce this extremely high degree of molecular variety in a very simple experiment is a remarkable feature of organic chemistry and possibly prerequisite for Life to emerge. It remains a future task to uncover how dedicated, organized chemical reaction pathways may have arisen from this degree of complexity.


Origin to life Complex chemical mixture Mass spectrometry NMR Miller-Urey experiment 



We thank Karsten Kruse, Uli Kazmaier, Gerhard Wenz, Michael Veith, Josef Zapp, Hermann Sachdev, Daniel Krug and the Department of Pharmaceutical Biotechnology, Reiner Wintringer and the Institute for Bioanalytical Chemistry and Klaus Schappert. We thank Jörg Schmauch for contributing the SEM measurements and the EDS analysis.

Financial support from the National FT-ICR network (FR 3624 CNRS) for conducting the research is gratefully acknowledged.

Supplementary material

11084_2015_9468_MOESM1_ESM.pdf (1.9 mb)
(PDF 1.86 MB)


  1. Anil Kumar M, Stephen Babu M, Srinivasulu K, Kiran Y, Suresh Reddy C (2007) Polyethylene glycol in water: A simple and environment friendly media for Strecker reaction. J Mol Catal A-Chem 265:268–271CrossRefGoogle Scholar
  2. Bax A, Summers M (1986) Proton and carbon-13 assignments from sensitivity-enhanced detection of heteronuclear multiple-bond connectivity by 2D multiple quantum NMR. J Am Chem Soc 108:2093–2094CrossRefGoogle Scholar
  3. Bax A, Griffey R, Hawkins B (1983) Correlation of proton and nitrogen-15 chemical shifts by multiple quantum NMR. J Magn Reson 55:301–315Google Scholar
  4. Bernstein MP, Sandford SA, Allamandola LJ, Gillette JS, Clemett SJ, Zare RN (1999) UV irradiation of polycyclic aromatic hydrocarbons in ices: Production of alcohols, quinones, and ethers. Science 283:1135–1138CrossRefPubMedGoogle Scholar
  5. Bonnet JY, Thissen R, Frisari M, Vuitton V, Quirico E, Orthous-Daunay FR, Dutuit O, Le Roy L, Fray N, Cottin H, Hörst SM, Yelle R (2013) Compositional and structural investigation of HCN polymer through high resolution mass spectrometry. Int J Mass Spectrom 354-355:193–203CrossRefGoogle Scholar
  6. Bothner-By AA, Stephens RL, Lee J, Warren CD, Jeanloz RW (1984) Structure determination of a tetrasaccharide: transient nuclear Overhauser effects in the rotating frame. J Am Chem Soc 106:811–813CrossRefGoogle Scholar
  7. Braunschweiler L, Ernst R (1983) Coherence transfer by isotropic mixing: application to proton correlation spectroscopy. J Magn Reson 53:521–528Google Scholar
  8. Cleaves HJ, Chalmers JH, Lazcano A, Miller SL, Bada JL (2008) A reassessment of prebiotic organic synthesis in neutral planetary atmospheres. Orig Life Evol Biosph 38:105–115CrossRefPubMedGoogle Scholar
  9. Ferris JP, Hagan WJ (1984) HCN and chemical evolution: The possible role of cyano compounds in prebiotic sythesis. Tetrahedron 40:1093–1120CrossRefPubMedGoogle Scholar
  10. Ferus M, Nesvornýc D, Šponer J, Kubelíka P, Michalčíková R, Shestivská V, Šponer J, Civiš S (2014) High-energy chemistry of formamide: A unified mechanism of nucleobase formation. Proc Natl Acad Sci 112:657–662Google Scholar
  11. Fox SW (1995) Thermal synthesis of amino acids and the origin of life. Geochim Cosmochim Acta 59:1213–1214CrossRefPubMedGoogle Scholar
  12. Greig M, Griffey RH (1995) Utility of organic bases for improved electrospray mass spectrometry of oligonucleotides. Rapid Commun Mass Spectrom 9:97–102CrossRefPubMedGoogle Scholar
  13. Groen J, Deamer DW, Kros A, Ehrenfreund P (2012) Polycyclic aromatic hydrocarbons as plausible prebiotic membrane components. Orig Life Evol Biosph 42:295–306PubMedCentralCrossRefPubMedGoogle Scholar
  14. Gross JH (2011) Mass spectrometry: a textbook. Springer, BerlinCrossRefGoogle Scholar
  15. He C, Guangxin L, Upton KT, Imanaka H, Smith MA (2012) Structural investigation of HCN polymer isotopomers by solution-state multidimensional NMR. J Phys Chem A 116:4751–4759CrossRefPubMedGoogle Scholar
  16. Hertkorn N, Frommberger M, Witt M, Koch BP, Schmitt-Kopplin P, Perdue EM (2008) Natural organic matter and the event horizon of mass spectrometry. Anal Chem 80:8908–8919CrossRefPubMedGoogle Scholar
  17. Johnson AP, Cleaves HJ, Dworkin JP, Glavin DP, Lazcano A, Bada JL (2008) The Miller volcanic spark discharge experiment. Science 322:404–404CrossRefPubMedGoogle Scholar
  18. Kalinoski HT, Hargiss LO (1992) Collision-induced dissociation mass spectrometry of nonionic surfactants following direct supercritical fluid injection. J Am Soc Mass Spectrom 3:150–158CrossRefPubMedGoogle Scholar
  19. Kendrick E (1963) A mass scale based on CH2=14.0000 for high resolution mass spectrometry of organic compounds. Anal Chem 35:2146–2154CrossRefGoogle Scholar
  20. Kiesewetter M, Shin E, Hedrick J (2010) Organocatalysis: opportunities and challenges for polymer synthesis. Macromolecules 43:2093–2107CrossRefGoogle Scholar
  21. Kim S, Kramer RW, Hatcher PG (2003a) Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the Van Krevelen diagram. Anal Chem 75:5336–5344CrossRefPubMedGoogle Scholar
  22. Kim YJ, Uyama H, Kobayashi S (2003b) Regioselective synthesis of poly(phenylene) as a complex with poly(ethylene glycol) by template polymerization of phenol in water. Macromolecules 36:5058–5060CrossRefGoogle Scholar
  23. Kobayashi K, Kaneko T, Saito T, Oshima T (1998) Amino acid formation in gas mixtures by high energy particle irradiation. Orig Life Evol Biosph 28:155–165CrossRefPubMedGoogle Scholar
  24. Koch BP, Dittmar T (2006) From mass to structure: an aromaticity index for high-resolution mass data of natural organic matter. Rapid Commun Mass Spectrom 20:926–932CrossRefGoogle Scholar
  25. Lattimer RP (1992a) Tandem mass spectrometry of lithium-attachment ions from polyglycols. J Am Soc Mass Spectrom 3:225–234CrossRefPubMedGoogle Scholar
  26. Lattimer RP (1992b) Tandem mass spectrometry of poly(ethylene glycol) proton- and deuteron-attachment ions. Int J Mass Spectrom Ion Process 116:23–26CrossRefGoogle Scholar
  27. Lowe CU, Rees MW, Markham R (1963) Synthesis of complex organic compounds from simple precursors: formation of amino-acids, amino-acid polymers, fatty acids and purines from ammonium cyanide. Nature 199:219–222CrossRefPubMedGoogle Scholar
  28. Matthews CN (1975) The origin of proteins: Heteropolypeptides from hydrogen cyanide and water. Orig Life 6:155–162CrossRefPubMedGoogle Scholar
  29. Matthews CN, Minard RD (2006) Hydrogen cyanide polymers, comets and the origin of life. Faraday Discuss 133:393–401CrossRefPubMedGoogle Scholar
  30. McCollom TM, Ritter G, Simoneit BRT (1999) Lipid synthesis under hydrothermal conditions by fischer-tropsch-type reactions. Orig Life Evol Biosph 29:153–166CrossRefPubMedGoogle Scholar
  31. Menor-Salván C, Ruiz-Bermejo M, Osuna-Esteban S, Muñoz-Caro G, Veintemillas-Verdaguer S (2008) Synthesis of polycyclic aromatic hydrocarbons and acetylene polymers in ice: a prebiotic scenario. Chem Biodivers 5:2729–2739CrossRefPubMedGoogle Scholar
  32. Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117:528–529CrossRefPubMedGoogle Scholar
  33. Miller SL (1955) Production of some organic compounds under possible primitive earth conditions. J Am Chem Soc 77:2351–2361CrossRefGoogle Scholar
  34. Miller SL (1957) The mechanism of synthesis of amino acids by electric discharges. Biochim Biophys Acta 23:490–498Google Scholar
  35. Miyakawa S, Yamanashi H, Kobayashi K, Cleaves HJ, Miller SL (2002) Prebiotic synthesis from CO atmospheres: implications for the origins of life. Proc Natl Acad Sci 99:14,628–14,631CrossRefGoogle Scholar
  36. Oró J (1960) Synthesis of adenine from ammonium cyanide. Biochem Biophys Res Comm 2:407–412CrossRefGoogle Scholar
  37. Oró J (1961) Mechanism of synthesis of adenine from hydrogen cyanide under possible primitive earth conditions. Nature 191:1193–1194CrossRefPubMedGoogle Scholar
  38. Oró J (1963) Synthesis of organic compounds by electric discharge. Nature 197:862–867CrossRefGoogle Scholar
  39. Oró J, Kimball A, Fritz R, Master F (1959) Amino acid synthesis from formaldehyde and hydroxylamine. Arch Biochem Biophys 86:115–130CrossRefGoogle Scholar
  40. Parker ET, Cleaves HJ, Dworkin JP, Glavin DP, Callahan M, Aubrey A, Lazcano A, Bada JL (2011) Primordial synthesis of amines and amino acids in a 1958 Miller H2S-rich spark discharge experiment. Proc Natl Acad Sci 108:5526–5531PubMedCentralCrossRefPubMedGoogle Scholar
  41. Piantini U, Sorensen OW, Ernst RR (1982) Multiple quantum filters for elucidating NMR coupling networks. J Am Chem Soc 104:6800–6801CrossRefGoogle Scholar
  42. Reemtsma T (2009) Determination of molecular formulas of natural organic matter molecules by (ultra-) high-resolution mass spectrometry: Status and needs. J Chromatogr A 1216:3687–3701CrossRefPubMedGoogle Scholar
  43. Ruiz-Bermejo M, de la Fuente JL, Rogero C, Menor-Salván C, Osuna-Esteban S, Martìn-Gago J (2012) New insights into the characterization of insoluble black HCN polymers. Chem Biodivers 9:25–40CrossRefPubMedGoogle Scholar
  44. Ruiz-Mirazo K, Briones C, de la Escosura A (2014) Prebiotic systems chemistry: New perspectives for the origins of life. Chem Rev 114:285–366CrossRefPubMedGoogle Scholar
  45. Sanchez R, Ferris J, Orgel LE (1966a) Conditions for purine synthesis: Did prebiotic synthesis occur at low temperatures? Science 153:72–73CrossRefPubMedGoogle Scholar
  46. Sanchez R, Ferris J, Orgel LE (1966b) Cyanoacetylene in prebiotic synthesis. Science 154:784–785CrossRefPubMedGoogle Scholar
  47. Santamaria L, Fleischmann L (1966) Photochemical synthesis of amino acids from paraformaldehyde catalysed by inorganic agents. Experientia 22:430–431CrossRefPubMedGoogle Scholar
  48. Schlesinger G, Miller SL (1983) Prebiotic synthesis in atmospheres containing CH4, CO, and CO2. J Mol Evol 19:376–382CrossRefPubMedGoogle Scholar
  49. Schramm S, Carré V, Scheffler JL, Aubriet F (2011) Analysis of mainstream and sidestream cigarette smoke particulate matter by laser desorption mass spectrometry. Anal Chem 83:133–142CrossRefPubMedGoogle Scholar
  50. Selby TL, Wesdemiotis C, Lattimer RP (1994) Dissociation characteristics of [M + X] + ions (X = H, Li, Na, K) from linear and cyclic polyglycols. Int J Mass Spectrom Ion Process 5:1081–1092Google Scholar
  51. Shaw GH (2008) Earth’s atmosphere - hadean to early proterozoic. Chem Erde 68:235–264CrossRefGoogle Scholar
  52. Simionescu CI, Totolin MI, Denes F (1976) Abiotic synthesis of some polysaccharide-like and polypeptide-like structures in cold plasma. Biosystems 8:153–158CrossRefPubMedGoogle Scholar
  53. Starks CM, Liotta CL, Halpern ME (1994) Phase-transfer catalysis–fundamentals, applications and industrial perspectives. Springer-Science+Business Media, DordrechtGoogle Scholar
  54. Tian F, Kasting J, Zahnle K (2011) Revisiting HCN formation in earth’s early atmosphere. Earth Planet Sci Lett 308:417–423CrossRefGoogle Scholar
  55. Totten GE, Clinton NA (1998) Poly(ethylene glycol) and derivatives as phase transfer catalysts. J Macromol Sci-Pol R 38:77–142Google Scholar
  56. Trinks H, Schröder W, Biebricher CK (2005) Ice and the origin of life. Orig Life Evol Biosph 35:429–445CrossRefPubMedGoogle Scholar
  57. Wang X, Maeda K, Chen X, Takanabe K, Domen K, Hou Y, Fu X, Antonietti M (2009) Polymer semiconductors for artificial photosynthesis: Hydrogen evolution by mesoporous graphitic carbon nitride with visible light. J Am Chem Soc 131:1680–1681CrossRefPubMedGoogle Scholar
  58. Watson JT, Sparkman OD (2008) Introduction to mass spectrometry: Instrumentation, applications and strategies for data interpretation. Wiley, ChichesterGoogle Scholar
  59. Willcott MR (2009) MestRe Nova. J Am Chem Soc 131:13,180–13,180CrossRefGoogle Scholar
  60. Wu D, Chen A, Johnson C (1995) An improved diffusion-ordered spectroscopy experiment incorporating bipolar-gradient pulses. J Magn Reson A 115:260–264CrossRefGoogle Scholar
  61. Yang CP, Ting CY (1993) Preparation of quaternary ammonium resin by epoxy resin and tertiary amine and its electrodeposition properties. J Appl Polym Sci 49:1019–1029CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Eva Wollrab
    • 1
    • 6
  • Sabrina Scherer
    • 1
  • Frédéric Aubriet
    • 2
  • Vincent Carré
    • 2
  • Teresa Carlomagno
    • 3
    • 4
    • 5
  • Luca Codutti
    • 3
    • 5
  • Albrecht Ott
    • 1
  1. 1.Biologische ExperimentalphysikUniversität des SaarlandesSaarbrückenGermany
  2. 2.Laboratoire de Chimie et Physique Multi-échelle des Milieux Complexes (LCP-A2MC)Université de LorraineMetzFrance
  3. 3.Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
  4. 4.Helmoltz Zentrum für InfektionsforschungBraunschweigGermany
  5. 5.Centre of Biomolecular Drug ResearchLeibniz UniversityHannoverGermany
  6. 6.Laboratory of Microbial Morphogenesis and GrowthInstitut PasteurParis Cedex 15France

Personalised recommendations