Phosphorus: a Case for Mineral-Organic Reactions in Prebiotic Chemistry

ORIGINS 2014

Abstract

The ubiquity of phosphorus (P) in modern biochemistry suggests that P may have participated in prebiotic chemistry prior to the emergence of life. Of the major biogenic elements, phosphorus alone lacks a substantial volatile phase and its ultimate source therefore had to have been a mineral. However, as most native P minerals are chemically un-reactive within the temperature-pressure-pH regimes of contemporary life, it begs the question as to whether the most primitive early living systems on earth had access to a more chemically reactive P-mineral inventory. The meteoritic mineral schreibersite has been proposed as an important source of reactive P on the early earth. The chemistry of schreibersite as a P source is summarized and reviewed here. Recent work has also shown that reduced oxidation state P compounds were present on the early earth; these compounds lend credence to the relevance of schreibersite as a prebiotic mineral. Ultimately, schreibersite will oxidize to phosphate, but several high-energy P intermediates may have provided the reactive material necessary for incorporating P into prebiotic molecules.

Keywords

Phosphorus Prebiotic Schreibersite Surface chemistry Radical reactions Phosphorylation 

References

  1. Berzelius JJ (1832) Undersokning af en vid Bohumiliz i Bohmen funnen jernmassa. Kongelige Svenska Vetenskaps-Academiens Handlingar 106–119Google Scholar
  2. Bottke WF, Vokrouhlický D, Minton D, Nesvorný D, Morbidelli A, Brasser R, Simonson B, Levison HF (2012) An Archaean heavy bombardment from a destabilized extension of the asteroid belt. Nature 485:78–81PubMedCrossRefGoogle Scholar
  3. Bryant DE, Kee TP (2006) Direct evidence for the availability of reactive, water soluble phosphorus on the early Earth. H-Phosphinic acid from the Nantan meteorite. Chem Commun 22:2344–2346CrossRefGoogle Scholar
  4. Bryant DE, Greenfield D, Walshaw RD, Evans SM, Nimmo AE, Smith C, Wang L, Pasek MA, Kee TP (2009) Electrochemical studies of iron meteorites. Phosphorus redox chemistry on the early Earth. Int J Astrobiol 8:27–36CrossRefGoogle Scholar
  5. Bryant DE, Greenfield D, Walshaw RD, Johnson BR, Herschy B, Smith C, Pasek MA, Telford R, Scowen I, Munshi T, Edwards HGM, Cousins CR, Crawford I, Kee TP (2013) Hydrothermal modification of the Sikhote-Alin iron meteorite under low pH geothermal environments. A plausibly prebiotic route to activated phosphorus on the early Earth. Geochim Cosmochim Acta 109:90–112CrossRefGoogle Scholar
  6. Cooper GW, Onwo WM, Cronin JR (1992) Alkyl phosphonic acids and sulfonic acids in the Murchison meteorite. Geochim Cosmochim Acta 56:4109–4115PubMedCrossRefGoogle Scholar
  7. De Graaf RM, Visscher J, Schwartz AW (1995) A plausibly prebiotic synthesis of phosphonic acids. Nature 378:474–477PubMedCrossRefGoogle Scholar
  8. De Graaf RM, Visscher J, Schwartz AW (1997) Reactive phosphonic acids as prebiotic carriers of phosphorus. J Mol Evol 44:237–241PubMedCrossRefGoogle Scholar
  9. De Graaf RM, Visscher J, Schwartz AW (1998) Prebiotic chemistry of phosphonic acids: products derived from phosphonoacetaldehyde in the presence of formaldehyde. Orig Life Evol Biosph 28:271–282PubMedCrossRefGoogle Scholar
  10. Descostes M, Mercier F, Thromat N, Beaucaire C, Gautier-Soyer M (2000) Use of XPS in the determination of chemical environment and oxidation state of iron and sulfur samples: constitution of a data basis in binding energies for Fe and S reference compounds and applications to the evidence of surface species of an oxidized pyrite in a carbonate medium. Appl Surf Sci 165:288–302CrossRefGoogle Scholar
  11. Essene EJ, Fisher DC (1986) Lightning strike fusion: extreme reduction and metal-silicate liquid immiscibility. Science 234:189–193PubMedCrossRefGoogle Scholar
  12. Fudali RF, Dyar MD, Griscom DL, Schreiber HD (1987) The oxidation state of iron in tektite glass. Geochim Cosmochim Acta 51:2749–2756CrossRefGoogle Scholar
  13. Glindemann D, Eismann F, Bergmann A, Kuschk P, Stottmeister U (1998) Phosphine by bio-corrosion of phosphide-rich iron. Environ Sci Pollut Res 5:71–74CrossRefGoogle Scholar
  14. Glindemann D, De Graaf RM, Schwartz AW (1999) Chemical reduction of phosphate on the primitive Earth. Orig Life Evol Biosph 29:555–561PubMedCrossRefGoogle Scholar
  15. Glindemann D, Edwards M, Kuschk P (2003) Phosphine gas in the upper troposphere. Atmos Environ 37:2429.2433CrossRefGoogle Scholar
  16. Glindemann D, Edwards M, Schrems O (2004) Phosphine and methylphosphine production by simulated lightning—a study for the volatile phosphorus cycle and cloud formation in the earth atmosphere. Atmos Environ 38:6867–6874CrossRefGoogle Scholar
  17. Grossman L (1972) Condensation in the primitive solar nebula. Geochim Cosmochim Acta 36:597–619CrossRefGoogle Scholar
  18. Gulick A (1955) Phosphorus as a factor in the origin of life. Am Sci 43:479–489Google Scholar
  19. Gulick A (1957) Phosphorus and the origin of life. Ann N Y Acad Sci 69:309–313PubMedCrossRefGoogle Scholar
  20. Gull M, Pasek MA (2013) Is struvite a prebiotic mineral? Life 3:321–330PubMedCentralPubMedCrossRefGoogle Scholar
  21. Han C, Geng J, Ren H, Gao S, Xie X, Wang X (2013) Phosphite in sedimentary interstitial water of Lake Taihu, a large eutrophic shallow lake in China. Environ Sci Technol 47:5679–5685PubMedCrossRefGoogle Scholar
  22. Handschuh GJ, Orgel LE (1973) Struvite and prebiotic phosphorylation. Science 179:483–484PubMedCrossRefGoogle Scholar
  23. Hazen RM (2013) Paleomineralogy of the Hadean Eon: a preliminary species list. Am J Sci 313:807–843CrossRefGoogle Scholar
  24. Herschy B (2013) Chemical processing of phosphorus inclusions within iron meteorites and related investigations. Ph.D. thesis. University of Leeds, 281 ppGoogle Scholar
  25. Hud NV, Cafferty BJ, Krishnamurthy R, Williams LD (2013) The origin of RNA and “my grandfather’s axe”. Chem Biol 20:466–474PubMedCrossRefGoogle Scholar
  26. Javoy M, Kaminski E, Guyot F, Andrault D, Sanloup C, Moreira M, Labrosse S, Jambon A, Agrinier P, Davaille A, Jaupart C (2010) The chemical composition of the earth: enstatite chondrite models. Earth Planet Sci Lett 293:259–268CrossRefGoogle Scholar
  27. Johnson BC, Melosh HJ (2012) Impact spherules as a record of an ancient heavy bombardment of Earth. Nature 485:75–77PubMedCrossRefGoogle Scholar
  28. Kee TP, Bryant DE, Herschy B, Marriott KE, Cosgrove NE, Pasek MA, Atlas Z, Cousins CR (2013) Phosphate activation via reduced oxidation state phosphorus (P). Mild routes to condensed-P energy currency molecules. Life 3:386–402PubMedCentralPubMedCrossRefGoogle Scholar
  29. Keefe AD, Miller SL (1995) Are polyphosphates or phosphate esters prebiotic reagents? J Mol Evol 41:693–702PubMedCrossRefGoogle Scholar
  30. Kelly WR, Larimer JW (1977) Chemical fractionations in meteorites—VIII. Iron meteorites and the cosmochemical history of the metal phase. Geochim Cosmochim Acta 41:93–111CrossRefGoogle Scholar
  31. Lehner SW, Buseck PR, McDonough WF (2010) Origin of kamacite, schreibersite, and perryite in metal‐sulfide nodules of the enstatite chondrite Sahara 97072 (EH3). Meteorit Planet Sci 45:289–303CrossRefGoogle Scholar
  32. McCaffrey VP, Zellner NEB, Waun CM, Bennett ER, Earl EK (2014) Reactivity and survivability of glycolaldehyde in simulated meteorite impact experiments. Orig Life Evol Biosph 44:29–42PubMedCrossRefGoogle Scholar
  33. McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  34. Melosh HJ (1989) Impact cratering: a geologic process. Oxford University Press, New York, Oxford Monographs on Geology and Geophysics, No. 11. 253 ppGoogle Scholar
  35. Miller SL, Urey HC (1959) Organic compound synthesis on the primitive earth. Science 130:245–251Google Scholar
  36. Moretti JE, Müller UF (2014) A ribozyme that triphosphorylates RNA 5′-hydroxyl groups. Nucleic Acids Res 42:4767–4778PubMedCentralPubMedCrossRefGoogle Scholar
  37. Österberg R, Orgel LE, Lohrmann R (1973) Further studies of urea-catalyzed phosphorylation reactions. J Mol Evol 2:231–234PubMedCrossRefGoogle Scholar
  38. Pasek MA (2008) Rethinking early Earth phosphorus geochemistry. Proc Natl Acad Sci U S A 105:853–858PubMedCentralPubMedCrossRefGoogle Scholar
  39. Pasek MA (2014) Phosphorus as a lunar volatile. Icarus. doi:10.1016/j.icarus.2014.07.031 Google Scholar
  40. Pasek M, Block K (2009) Lightning-induced reduction of phosphorus oxidation state. Nat Geosci 2:553–556CrossRefGoogle Scholar
  41. Pasek MA, Kee TP (2011) On the origin of phosphorylated biomolecules. In: Origins of life: the primal self-organization. Springer, Berlin, pp 57–84CrossRefGoogle Scholar
  42. Pasek MA, Lauretta DS (2005) Aqueous corrosion of phosphide minerals from iron meteorites: a highly reactive source of prebiotic phosphorus on the surface of the early Earth. Astrobiology 5:515–535PubMedCrossRefGoogle Scholar
  43. Pasek M, Lauretta D (2008) Extraterrestrial flux of potentially prebiotic C, N, and P to the early Earth. Orig Life Evol Biosph 38:5–21PubMedCrossRefGoogle Scholar
  44. Pasek MA, Dworkin JP, Lauretta DS (2007) A radical pathway for organic phosphorylation during schreibersite corrosion with implications for the origin of life. Geochim Cosmochim Acta 71:1721–1736CrossRefGoogle Scholar
  45. Pasek MA, Kee TP, Bryant DE, Pavlov AA, Lunine JI (2008) Production of potentially prebiotic condensed phosphates by phosphorus redox chemistry. Angew Chem Int Ed 47:7918–7920CrossRefGoogle Scholar
  46. Pasek MA, Harnmeijer JP, Buick R, Gull M, Atlas Z (2013) Evidence for reactive reduced phosphorus species in the early Archean ocean. Proc Natl Acad Sci U S A 110:10089–10094PubMedCentralPubMedCrossRefGoogle Scholar
  47. Pasek MA, Sampson J, Atlas ZD (2014) Redox chemistry in the phosphorus biogeochemical cycle. Proc Natl Acad Sci U S A 111:15468–15473PubMedCentralPubMedCrossRefGoogle Scholar
  48. Pech H, Henry A, Khachikian CS, Salmassi TM, Hanrahan G, Foster KL (2009) Detection of geothermal phosphite using high-performance liquid chromatography. Environ Sci Technol 43:7671–7675PubMedCentralPubMedCrossRefGoogle Scholar
  49. Pech H, Vasquez M, Van Buren J, Xu L, Salmassi T, Pasek MA, Foster K (2011) Elucidating the redox cycle of environmental phosphorus using ion chromatography. J Chromatogr Sci 49:573–581PubMedCrossRefGoogle Scholar
  50. Pelavin MD, Hendrickson DN, Hollander JM, Jolly WL (1970) Phosphorus 2p electron binding energies. Correlation with extended Hueckel charges. J Phys Chem 74:1116–1121CrossRefGoogle Scholar
  51. Peyser JR, Ferris JP (2001) The rates of hydrolysis of thymidyl-3′, 5′-thymidine-H-phosphonate: the possible role of nucleic acids linked by diesters of phosphorous acid in the origins of life. Orig Life Evol Biosph 31:363–380PubMedCrossRefGoogle Scholar
  52. Pirim C, Pasek MA, Sokolov DA, Sidorov AN, Gann R, Orlando TM (2014) Investigation of schreibersite and intrinsic oxidation products from Sikhote-Alin, Seymchan, and Odessa meteorites and Fe3P and Fe2NiP synthetic surrogates. Geochim Cosmochim Acta 140:259–274CrossRefGoogle Scholar
  53. Schäfer K, Asmus K-D (1980) Phosphite radicals and their reaction. Examples of redox, substitution, and addition reactions. J Phys Chem 84:2156–2160CrossRefGoogle Scholar
  54. Van Wazer JR (1958) Phosphorus and its compounds. Interscience, New York, 954 ppGoogle Scholar
  55. Yamagata Y, Watanabe H, Saitoh M, Namba T (1991) Volcanic production of polyphosphates and its relevance to prebiotic evolution. Nature 352:516–519PubMedCrossRefGoogle Scholar
  56. Zellner NEB, Delano JW, Swindle TD, Barra F, Olsen E, Whittet DCB (2009) Apollo 17 regolith, 71501, 262: a record of impact events and mare volcanism in lunar glasses. Meteorit Planet Sci 44:839–851CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.School of GeosciencesUniversity of South FloridaTampaUSA
  2. 2.Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
  3. 3.School of ChemistryUniversity of LeedsLeedsUK

Personalised recommendations