Advertisement

Origins of Life and Evolution of Biospheres

, Volume 44, Issue 3, pp 231–237 | Cite as

Extremophiles Survival to Simulated Space Conditions: An Astrobiology Model Study

  • V. Mastascusa
  • I. Romano
  • P. Di Donato
  • A. Poli
  • V. Della Corte
  • A. Rotundi
  • E. Bussoletti
  • M. Quarto
  • M. Pugliese
  • B. Nicolaus
Astrobiology

Abstract

In this work we investigated the ability of four extremophilic bacteria from Archaea and Bacteria domains to resist to space environment by exposing them to extreme conditions of temperature, UV radiation, desiccation coupled to low pressure generated in a Mars’ conditions simulator. All the investigated extremophilic strains (namely Sulfolobus solfataricus, Haloterrigena hispanica, Thermotoga neapolitana and Geobacillus thermantarcticus) showed a good resistance to the simulation of the temperature variation in the space; on the other hand irradiation with UV at 254 nm affected only slightly the growth of H. hispanica, G. thermantarcticus and S. solfataricus; finally exposition to Mars simulated condition showed that H. hispanica and G. thermantarcticus were resistant to desiccation and low pressure.

Keywords

Extremophiles Temperature resistance UV resistance Mars simulated conditions 

Notes

Acknowledgments

This work has been implemented in the frame of the project PON01_01966 “Integrated agro-industrial chains with high energy efficiency for the development of eco-compatible processes of energy and biochemicals production from renewable sources and for the land valorisation” funded by “MIUR- Ministero dell’Istruzione, dell’Università e della Ricerca”.

References

  1. Coorevits A, Dinsdale AE. Halket G, Lebbe L, De Vos P, Van Landschoot A, Logan NA (2012) Taxonomic revision of the genus Geobacillus: emendation of Geobacillus, G. stearothermophilus, G. jurassicus, G. toebii, G. thermodenitrificans and G. thermoglucosidans (nom. corrig., formerly ‘thermoglucosidasius’); transfer of Bacillus thermantarcticus to the genus as G. thermantarcticus; proposal of Caldibacillus debilis gen. nov., comb. nov.; transfer of G. tepidamans to Anoxybacillus as A. tepidamans and proposal of Anoxybacillus caldiproteolyticus sp. nov. Int J Syst Evol Microbiol 62:1470–1485Google Scholar
  2. Des Marais DJ, Nuth JA, Allamandola LJ, Boss AP, Farmer JD, Hoehler TM, Jakosky BM, Meadows VM, Pohorille A, Runnegar B, Spormann AM (2008) The NASA astrobiology roadmap. Astrobiology 8:715–730PubMedCrossRefGoogle Scholar
  3. Jannash WJ, Huber R, Belkin S, Stetter O (1988) Thermotoga neapolitana sp. nov.of the extremely Thermophilic eubacterial genus Thermotoga. Arch Microbiol 150:103–104CrossRefGoogle Scholar
  4. Lama L, Calandrelli V, Gambacorta A, Nicolaus B (2004) Purification and characterization of thermostable xylanase and β-xylosidase by the thermophilic bacterium Bacillus thermantarcticus. Res Microbiol 155:283–289PubMedCrossRefGoogle Scholar
  5. Newcombe D, Schuerger A, Benardini J, Dickinson D, Tanner R, Venkateswaran K (2005) Survival of spacecraft-associated microorganisms under simulated Martian UV irradiation. App Environ Microbiol 71(12):8147–8156CrossRefGoogle Scholar
  6. Nicholson W, Krivushin K, Gilichinsky D, Schuerger A (2013) Growth of Carnobacterium spp. from permafrost under low pressure, temperature, and anoxic atmosphere has implications for Earth microbes on Mars. Proc Natl Acad Sci 110(2):666–671PubMedCentralPubMedCrossRefGoogle Scholar
  7. Onofri S, Barreca D, Selbmann L, Isola D, Rabbow E, Horneck G, Zucconi L (2008) Resistance of Antarctic black fungi and cryptoendolithic communities to simulated space and Martian conditions. Stud Mycol 61:99–109PubMedCentralPubMedCrossRefGoogle Scholar
  8. Romano I, Poli A, Finore I, Huertas FJ, Gambacorta A, Pelliccione S, Nicolaus G, Lama L, Nicolaus B (2007) Haloterrigena hispanica sp. nov., an extremely halophilic archaeon from Fuente de Piedra, southern Spain. IJSEM 57:1499–1503PubMedGoogle Scholar
  9. Saffary R, Nandakumar R, Spencer D, Robb FT, Davila JM, Swartz M, Ofman L, Thomas RJ, DiRuggiero J (2002) Microbial survival of space vacuum and extreme ultraviolet irradiation: strain isolation and analysis during a rocket flight. FEMS Microbiol Lett 215:163–168PubMedCrossRefGoogle Scholar
  10. Schuerger A, Mancinelli R, Kern R, Rothschild L, McKay C (2003) Survival of endospores of Bacillus subtilis on spacecraft surfaces under simulated martian environments: implications for the forward contamination of Mars. Icarus 165(2):253–276PubMedCrossRefGoogle Scholar
  11. Zilling W, Stetter KO, Wunderl S, Schulz W, Priess H, Scholz I (1980) The Sulfolobus – “Caldariella” group: taxonomy on the basis of the structure of DNA-dependent RNA polymerases. Ach Microbiol 125:259–269Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • V. Mastascusa
    • 1
    • 2
  • I. Romano
    • 1
  • P. Di Donato
    • 1
    • 2
  • A. Poli
    • 1
  • V. Della Corte
    • 2
  • A. Rotundi
    • 2
  • E. Bussoletti
    • 2
  • M. Quarto
    • 3
  • M. Pugliese
    • 3
  • B. Nicolaus
    • 1
  1. 1.CNR-National Research Council of ItalyInstitute of Biomolecular ChemistryPozzuoliItaly
  2. 2.University of Naples ParthenopeNaplesItaly
  3. 3.University of Naples Federico IINaplesItaly

Personalised recommendations