Origins of Life and Evolution of Biospheres

, Volume 43, Issue 4–5, pp 341–352 | Cite as

Sunlight-initiated Chemistry of Aqueous Pyruvic Acid: Building Complexity in the Origin of Life

  • Elizabeth C. Griffith
  • Richard K. Shoemaker
  • Veronica Vaida
Prebiotic Chemistry


Coupling chemical reactions to an energy source is a necessary step in the origin of life. Here, we utilize UV photons provided by a simulated sun to activate aqueous pyruvic acid and subsequently prompt chemical reactions mimicking some of the functions of modern metabolism. Pyruvic acid is interesting in a prebiotic context due to its prevalence in modern metabolism and its abiotic availability on early Earth. Here, pyruvic acid (CH3COCOOH, a C3 molecule) photochemically reacts to produce more complex molecules containing four or more carbon atoms. Acetoin (CH3CHOHCOCH3), a C4 molecule and a modern bacterial metabolite, is produced in this chemistry as well as lactic acid (CH3CHOHCOOH), a molecule which, when coupled with other abiotic chemical reaction pathways, can provide a regeneration pathway for pyruvic acid. This chemistry is discussed in the context of plausible environments on early Earth such as near the ocean surface and atmospheric aerosol particles. These environments allow for combination and exchange of reactants and products of other reaction environments (such as shallow hydrothermal vents). The result could be a contribution to the steady increase in chemical complexity requisite in the origin of life.


Solar photochemistry Pyruvic acid Primitive metabolism Aqueous environments 



V.V. and E.C.G. would like to thank the National Science Foundation (NSF CHE-1011770) for funding of this work. E.C.G. also acknowledges support from a NASA Earth and Space Science Graduate Fellowship as well as a Marian Sharrah Graduate Fellowship from the University of Colorado, Boulder.


  1. Awramik SM (1992) The oldest records of photosynthesis. Photosynth Res 33(2):75–89CrossRefGoogle Scholar
  2. Ball P (1999) H2O: A biography of water. Weidenfeld & Nicolson Limited, UKGoogle Scholar
  3. Canuto VM, Levine JS, Augustsson TR, Imhoff CL (1982) UV radiation from the young sun and oxygen and ozone levels in the prebiological paleoatmosphere. Nature 296(5860):816–820CrossRefGoogle Scholar
  4. Catling DC, Claire MW (2005) How Earth’s atmosphere evolved to an oxic state: A status report. Earth Planet Sci Lett 237(1–2):1–20CrossRefGoogle Scholar
  5. Chyba C, Sagan C (1991) Electrical energy sources for organic synthesis on the early Earth. Orig Life Evol Biosph 21(1):3–17. doi: 10.1007/bf01809509 PubMedCrossRefGoogle Scholar
  6. Chyba C, Sagan C (1992) Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature 355:125–132PubMedCrossRefGoogle Scholar
  7. Cleaves HJ, Miller SL (1998) Oceanic protection of prebiotic organic compounds from UV radiation. Proc Natl Acad Sci U S A 95(13):7260–7263PubMedCentralPubMedCrossRefGoogle Scholar
  8. Closs GL, Miller RJ (1978) Photo-reduction and photodecarbosylation of pyruvic acid—applications of CIDNP to mechanistic photochemistry. J Am Chem Soc 100(11):3483–3494CrossRefGoogle Scholar
  9. Cody GD, Boctor NZ, Filley TR, Hazen RM, Scott JH, Sharma A, Yoder HS (2000) Primordial carbonylated iron-sulfur compounds and the synthesis of pyruvate. Science 289(5483):1337–1340PubMedCrossRefGoogle Scholar
  10. Cooper G, Reed C, Nguyen D, Carter M, Wang Y (2011) Detection and formation scenario of citric acid, pyruvic acid, and other possible metabolism precursors in carbonaceous meteorites. Proc Natl Acad Sci U S A 108(34):14015–14020PubMedCentralPubMedCrossRefGoogle Scholar
  11. Crabtree GW, Lewis NS (2007) Solar energy conversion. PhT 60(3):37–42Google Scholar
  12. Deamer DW, Harang E (1990) Light-dependent pH gradients are generated in liposomes containing ferrocyanide. Bio Syst 24(1):1–4Google Scholar
  13. Deamer DW, Pashley RM (1989) Amphiphilic components of the Murchison carbonaceous chondrite—surface-properties and membrane formation. Orig Life Evol Biosph 19(1):21–38PubMedCrossRefGoogle Scholar
  14. Deamer D, Weber AL (2010) Bioenergetics and life’s origins. Cold Spring Harbor Perspectives in Biology 2 (2)Google Scholar
  15. Dobson CM, Ellison GB, Tuck AF, Vaida V (2000) Atmospheric aerosols as prebiotic chemical reactors. Proc Natl Acad Sci U S A 97(22):11864–11868PubMedCentralPubMedCrossRefGoogle Scholar
  16. Donaldson DJ, Tervahattu H, Tuck AF, Vaida V (2004) Organic aerosols and the origin of life: An hypothesis. Orig Life Evol Biosph 34(1–2):57–67PubMedCrossRefGoogle Scholar
  17. Goldman N, Reed EJ, Fried LE, Kuo IFW, Maiti A (2010) Synthesis of glycine-containing complexes in impacts of comets on early Earth. Nat Chem 2(11):949–954PubMedCrossRefGoogle Scholar
  18. Griffith EC, Tuck AF, Vaida V (2012) Ocean–atmosphere interactions in the emergence of complexity in simple chemical systems. Acc Chem Res 45(12):2106–2113PubMedCrossRefGoogle Scholar
  19. Griffith EC, Carpenter BK, Shoemaker RK, Vaida V (2013) Photochemistry of aqueous pyruvic acid. Proc Natl Acad Sci U S A 110(29):11714–11719PubMedCentralPubMedCrossRefGoogle Scholar
  20. Groen J, Deamer D, Kros A, Ehrenfreund P (2012) Polycyclic aromatic hydrocarbons as plausible prebiotic membrane components. Orig Life Evol Biosph 42(4):295–306PubMedCentralPubMedCrossRefGoogle Scholar
  21. Guzman MI, Martin ST (2008) Oxaloacetate-to-malate conversion by mineral photoelectrochemistry: Implications for the viability of the reductive tricarboxylic acid cycle in prebiotic chemistry. IJAsB 7(3–4):271–278Google Scholar
  22. Guzman MI, Martin ST (2009) Prebiotic metabolism: Production by mineral photoelectrochemistry of alpha-ketocarboxylic acids in the reductive tricarboxylic acid cycle. Astrobiology 9(9):833–842PubMedCrossRefGoogle Scholar
  23. Guzman MI, Martin ST (2010) Photo-production of lactate from glyoxylate: How minerals can facilitate energy storage in a prebiotic world. Chem Commun 46(13):2265–2267CrossRefGoogle Scholar
  24. Guzman MI, Colussi AJ, Hoffmann MR (2006) Photoinduced oligomerization of aqueous pyruvic acid. J Phys Chem A 110(10):3619–3626PubMedCrossRefGoogle Scholar
  25. Hazen RM, Deamer DW (2007) Hydrothermal reactions of pyruvic acid: Synthesis, selection, and self-assembly of amphiphilic molecules. Orig Life Evol Biosph 37(2):143–152PubMedCrossRefGoogle Scholar
  26. Hazen RM, Sverjensky DA (2010) Mineral surfaces, geochemical complexities, and the origins of life. Cold Spring Harbor Perspectives in Biology 2(5):21CrossRefGoogle Scholar
  27. Hazen RM, Boctor N, Brandes JA, Cody GD, Hemley RJ, Sharma A, Yoder HS (2002) High pressure and the origin of life. J Phys Conden Matt 14(44):11489–11494CrossRefGoogle Scholar
  28. Hugenholtz J (1993) Citrate metabolism in lactic acid bacteria. FEMS Microbiol Rev 12(1–3):165–178CrossRefGoogle Scholar
  29. Kasting JF (1993) Earth’s early atmosphere. Science 259(5097):920–926PubMedCrossRefGoogle Scholar
  30. Kasting JF, Zahnle KJ, Pinto JP, Young AT (1989) Sulfur, ultraviolet radiation, and the early evolution of life. Orig Life Evol Biosph 19(2):95–108PubMedCrossRefGoogle Scholar
  31. Kauffman S (2000) Investigations. Oxford University Press, OxfordGoogle Scholar
  32. Larsen MC, Vaida V (2012) Near infrared photochemistry of pyruvic acid in aqueous solution. J Phys Chem A 116(24):5840–5846PubMedCrossRefGoogle Scholar
  33. Leermakers PA, Vesley GF (1963a) Photochemistry of alpha-keto acids and alpha-keto esters. 1. Photolysis of pyruvic acid and benzoylformic acid. J Am Chem Soc 85(23):3776–3779CrossRefGoogle Scholar
  34. Leermakers PA, Vesley GF (1963b) Photolysis of pyruvic acid in solution. J Org Chem 28(4):1160–1161Google Scholar
  35. Lerman L (2010) The primordial bubble: Water, symmetry-breaking, and the origin of life. In: Lynden-Bell RM, Morris SC, Barrow JD, Finney JL, Harper CL Jr (eds) Water and life: The unique properties of water. CRC Press, Boca Raton, pp 259–290CrossRefGoogle Scholar
  36. Lynden-Bell RM, Morris SC, Barrow JD, Finney JL, Harper CL Jr (eds) (2010) Water and life: The unique properties of water. CRC Press, Boca RatonGoogle Scholar
  37. Margulis L, Walker JCG, Rambler M (1976) Reassessment of roles of oxygen and ultraviolet light in Precambrian evolution. Nature 264(5587):620–624CrossRefGoogle Scholar
  38. Martin W, Baross J, Kelley D, Russell MJ (2008) Hydrothermal vents and the origin of life. Nat Revs Microbiology 6(11):805–814Google Scholar
  39. Mellouki A, Mu YJ (2003) On the atmospheric degradation of pyruvic acid in the gas phase. J Photochem Photobio A–Chem 157(2–3):295–300CrossRefGoogle Scholar
  40. Miller SL, Urey HC (1959) Organic compound synthesis on the primitive early Earth. Science 130(3370):245–251PubMedCrossRefGoogle Scholar
  41. Ogg RJ, Kingsley PB, Taylor JS (1994) WET, a T1- and B1-insensitive water-suppression method for in vivo localized 1H NMR spectroscopy. J Magn Reson Ser B 104(1):1–10CrossRefGoogle Scholar
  42. Pavlov AA, Brown LL, Kasting JF (2001) UV shielding of NH3 and O-2 by organic hazes in the Archean atmosphere. J Geophys Res - Planets 106(E10):23267–23287CrossRefGoogle Scholar
  43. Pinto JP, Gladstone GR, Yung YL (1980) Photochemical production of formaldehyde in Earth’s primitive atmosphere. Science 210(4466):183–184PubMedCrossRefGoogle Scholar
  44. Pizzarello S, Shock E (2010) The organic composition of carbonaceous meteorites: The evolutionary story ahead of biochemistry. Cold Spring Harbor Perspectives in Biology 2(3)Google Scholar
  45. Ritson D, Sutherland JD (2012) Prebiotic synthesis of simple sugars by photoredox systems chemistry. Nat Chem 4(11):895–899PubMedCentralPubMedCrossRefGoogle Scholar
  46. Ronkainen P, Brummer S, Suomalai H (1970) Diacetyl and formic acid as decomposition products of 2-acetolactic acid. Acta Chem Scand 24(9):3404–3406CrossRefGoogle Scholar
  47. Rosenfeld RN, Weiner B (1983) Energy disposal in the photofragmentation of pyruvic acid in the gas-phase. J Am Chem Soc 105(11):3485–3488CrossRefGoogle Scholar
  48. Russell MJ, Nitschke W, Branscomb E (2013) The inevitable journey to being. Philosoph Transac Royal Soc B: Biolog Sci 368(1622):20120254CrossRefGoogle Scholar
  49. Sagan C (1973) Ultraviolet selection pressure on the earliest organisms. J Theor Biol 39(1):195–200PubMedCrossRefGoogle Scholar
  50. Sagan C, Chyba C (1997) The early faint sun paradox: Organic shielding of ultraviolet-labile greenhouse gases. Science 276(5316):1217–1221PubMedCrossRefGoogle Scholar
  51. Schreiner PR, Reisenauer HP, Ley D, Gerbig D, Wu C-H, Allen WD (2011) Methylhydroxycarbene: Tunneling control of a chemical reaction. Science 332(6035):1300–1303PubMedCrossRefGoogle Scholar
  52. Segré D, Ben-Eli D, Lancet D (2000) Compositional genomes: Prebiotic information transfer in mutually catalytic noncovalent assemblies. Proc Natl Acad Sci U S A 97(8):4112–4117PubMedCentralPubMedCrossRefGoogle Scholar
  53. Shapiro R (2006) Small molecule interactions were central to the origin of life. Q Rev Biol 81(2):105–125PubMedCrossRefGoogle Scholar
  54. Sun K, Mauzerall D (1996) A simple light-driven transmembrane proton pump. Proc Natl Acad Sci U S A 93(20):10758–10762PubMedCentralPubMedCrossRefGoogle Scholar
  55. Takahashi K, Plath KL, Skodje RT, Vaida V (2008) Dynamics of vibrational overtone excited pyruvic acid in the gas phase: Line broadening through hydrogen-atom chattering. J Phys Chem A 112(32):7321–7331PubMedCrossRefGoogle Scholar
  56. Trainer MG, Pavlov AA, DeWitt HL, Jimenez JL, McKay CP, Toon OB, Tolbert MA (2006) Organic haze on titan and the early earth. Proc Natl Acad Sci U S A 103(48):18035–18042PubMedCentralPubMedCrossRefGoogle Scholar
  57. Tuck A (2002) The role of atmospheric aerosols in the origin of life. S Geo 23(5):379–409Google Scholar
  58. Tverdislov VA, Yakovenko LV (2008) Physical aspects of the emergence of living cell precursors: The ion and chiral asymmetries as two fundamental asymmetry types. Mosc Univ Phys Bull 63(3):151–163CrossRefGoogle Scholar
  59. Vaida V (2011) Perspective: Water cluster mediated atmospheric chemistry. J Chem Phys 135(2):8CrossRefGoogle Scholar
  60. Wolf ET, Toon OB (2010) Fractal organic hazes provided an ultraviolet shield for early earth. Science 328(5983):1266–1268PubMedCrossRefGoogle Scholar
  61. Xiao ZJ, Xu P (2007) Acetoin metabolism in bacteria. Crit Rev Microbiol 33(2):127–140PubMedCrossRefGoogle Scholar
  62. Yamamoto S, Back RA (1985) The photolysis and thermal decomposition of pyruvic acid in the gas phase. Canad J Chem-Rev Canadienne De Chimie 63(2):549–554CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Elizabeth C. Griffith
    • 1
    • 2
  • Richard K. Shoemaker
    • 1
  • Veronica Vaida
    • 1
    • 2
  1. 1.Department of Chemistry and BiochemistryUniversity of Colorado at BoulderBoulderUSA
  2. 2.CIRESBoulderUSA

Personalised recommendations